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Abstract— Active memory systems improve ap-
plication cache behavior by either performing data
parallel computation in the memory elements or
supporting address re-mapping in a specialized
memory controller. The former approach allows
more than one memory element to operate on the
same data, while the latter allows the processor to
access the same data via more than one address—
therefore data coherence is essential for correctness
and transparency in active memory systems. In
this paper we show that it is possible to extend a
conventional DSM coherence protocol to handle this
problem efficiently and transparently on uniproces-
sor as well as multiprocessor active memory sys-
tems. With a specialized programmable memory
controller we can support several active memory
operations with simple coherence protocol code mod-
ifications, and no hardware changes. This paper
presents details of the DSM cache coherence pro-
tocol extensions that allow speedup from 1.3 to 7.6
over normal memory systems on a range of simu-
lated uniprocessor and multiprocessor active mem-
ory applications.

Keywords: Active memory systems, address
re-mapping, cache coherence, distributed shared
memory, flexible memory controller.

1 Introduction
Active memory systems provide a

promising approach to overcoming the
memory wall for applications with irregular
access patterns not amenable to tech-
niques like prefetching or improvements in
the cache hierarchy. The central idea in
this approach is to perform data-parallel
computations [2, 4, 7] or scatter/gather
operations invoked via address remapping
techniques [1] in the memory system to
either offload computation directly or to re-

duce the number of processor cache misses.
Both active memory approaches create
coherence problems—even on uniprocessor
systems—since there are either additional
processors in the memory system operating
on the data directly, or the main processor
is allowed to refer to the same data via
more than one address.

This paper focuses on the challenges of
designing cache coherence protocols for ac-
tive memory systems. The necessity of en-
forcing data coherence between the nor-
mal cache line and the re-mapped cache
line makes the protocol behavior and the
performance requirements quite different
from those of a conventional DSM proto-
col. We propose an active memory system
that supports address remapping by lever-
aging and extending the hardware DSM
directory-based cache coherence protocol.
The key to our approach is that the ac-
tive memory controller not only performs
the remapping operations required, but also
runs the directory-based coherence proto-
col and hence controls which mappings are
present in the processor caches.

The paper is organized as follows. Sec-
tion 2 describes the protocol extensions re-
quired and protocol implementation issues
unique to active memory systems. Section 3
discusses active memory protocol-related
performance issues. Section 4 presents both
uniprocessor speedup and the performance
improvement of active memory applications
on single-node multiprocessors. Section 5
concludes the paper.
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Figure 1. Data Coherence Problem

2 DSM Protocol Exten-

sions for Active Mem-

ory Systems

Our embedded memory controller runs
software code sequences to implement the
coherence protocol following the same
philosophy as the FLASH multiproces-
sor [6]. However, the controller also in-
cludes specialized hardware to speed up ac-
tive memory protocol execution. Our base
(non-extended) protocol is a conventional
invalidation-based MSI bitvector directory
protocol running under release consistency.
For all normal (non-re-mapped) memory re-
quests, our memory controller follows this
base protocol. Each directory entry (per
128B cache line) is 8 bits wide. The sharer
vector occupies 4 bits, so we can support
up to 4 processors. This can be expanded
to larger machine sizes by increasing the
width of the sharer field. These four bits
store a sharer list vector if the cache line
is in the shared state or an owner identi-
fier for the dirty exclusive state. Two bits
are devoted to maintain cache line state in-
formation. The dirty bit indicates whether
a cache line is in the dirty exclusive state.
The AM bit is used for our active memory
protocol extensions and is not used by the
base protocol. Two remaining bits are left
unused.

2.1 Active Memory Exten-
sions

As an example of address remapping
techniques giving rise to a data coherence
problem, Figure 1 shows that the data el-
ement D0 in cache line C0 is mapped by
some address remapping technique to data
elements D1, D2 and D3 belonging to three
different cache lines C1, C2 and C3, re-
spectively. This means that D1, D2 and
D3 represent the same data variable as D0
and our active memory protocol extensions
must keep them coherent. As in the fig-
ure, if C1 and C2 are cached in the dirty
and shared state, respectively, the proces-
sor may write a new value to D1, but read
a stale value from D2. We extend the base
cache coherence protocol to enforce mutual
exclusion between the caching states of the
lines that are mapped to each other so that
only one cache line of the four mapped
cache lines (as in the example above) can be
cached at a time. If the processor accesses
another mapped cache line it will suffer a
cache miss and our protocol will invalidate
the old cache line before replying with the
requested cache line.

For each memory request, our protocol
consults the AM bit in the directory entry
for the requested cache line. The AM bit
of a cache line indicates whether any data
in the line has been re-mapped and is being
cached by processors in the system at a dif-
ferent address. If the AM bit is clear, there
is no possibility of a coherence violation and
the protocol behaves just like the base pro-
tocol with one additional task—to guaran-
tee coherence in the future, the protocol
sets the AM bits in the directory entries of
all the cache lines that are mapped to the
requested line. However, if the AM bit is
set, some of the re-mapped cache lines (we
collectively call these lines R) are cached
in the system and there is a potential data
coherence problem. The caching states of
R are obtained by reading the correspond-
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Figure 2. Example - Matrix Transpose

ing directory entries. If R is in the dirty
exclusive state, the protocol sends an inter-
vention to the owner of R to retrieve the
most recent copy of the data, updates the
mapped data value in the requested cache
line, sends the data reply to the requester,
and writes back the retrieved cache line to
main memory. If R is in the shared state,
the protocol sends invalidation requests to
all the sharers, reads the requested cache
line from memory (since it is clean) and
sends the data reply to the requester. In
both cases, the protocol updates the AM
bits in the directory entries of all the cache
lines mapped to the requested line.

2.2 Support for Active Mem-
ory Transpose

Although we have implemented four
active memory operations—Matrix Trans-
pose, Sparse Matrix Scatter/Gather, Linked
List Linearization, and Memory-side
Merge [5]—for space reasons we present
only matrix transpose as an example.
Assume the following: A is a square matrix
of dimension N , A′ is a transposed matrix
mapped to A, and two processors P0 and
P1 access them. The cache line size is
128 bytes and the data element size is 8
bytes (one double word), so one cache line
contains 16 data elements. At a certain
point in time, the memory snapshot is as
depicted in Figure 2 and P0 executes the
following code:
for i=0 to N-1
for j=0 to N-1
x += A’[i][j];

P0 reads a cache line C ′ of A′ and it misses
in the data cache. C ′ is composed of 16 dou-
ble words w0′, w1′, . . . , w15′ that are same
as w0, w1, . . . , w15, and the 16 cache lines
C0, C1, . . . , C15 of A contain them. P0 and
P1 are caching C1, C2 and C14 in the dirty
or shared states as shown in the figure. P0
sends a read request to the main memory
and the memory controller invokes the ap-
propriate coherence handler.

The protocol handler reads the directory
entry of C ′ and checks the AM bit. In
this case the AM bit is set because C1,
C2 and C14 are mapped to C ′ and they
are cached. Therefore, instead of using the
base protocol our extended protocol is in-
voked. From the physical address of C ′ the
address remapping hardware (the detailed
micro-architecture of the controller can be
found in [5]) calculates the addresses of the
cache lines mapped to C ′, which in this
case are C0, C1, . . . , C15. Since C ′ belongs
to the re-mapped address space and the
re-mapped physical address space is con-
tiguous, from the physical address of C ′

the protocol can calculate the position of
C ′ in the transposed matrix (i.e. A′) if it
knows the dimensions of the matrix and the
size of each element of the matrix in bytes.
This information along with the starting
virtual address of the matrix (i.e. A) is
stored in a table that is initialized at the
beginning of the application via a system-
level library call. Using the position of C ′

in A′ and the starting virtual address of
A the protocol calculates the virtual ad-
dresses of C0, C1, . . . , C15 and looks up a
TLB resident in the memory controller to
compute the corresponding 16 physical ad-
dresses. Next, the protocol reads the di-
rectory entries for each of these cache lines
and consults the dirty bit and the sharer
vector. For C1, we find that it is cached by
P0 in the dirty exclusive state. The pro-
tocol sends an intervention to P0 for this
line because at this point w1′ has a stale



value and the most recent value is w1 re-
siding in P0’s cache. On receiving the re-
ply from P0, the protocol updates w1′ with
the correct value and also writes back C1 to
memory. For C2, we find that it is cached
by P0 and P1 in the shared state, so the
protocol sends invalidations to P0 and P1
for this line. In this case, the protocol can
read the correct value of w2′ directly from
main memory. The case for C14 is simi-
lar to C1 except that P1, instead of P0, is
caching this line. For the other cache lines
that are clean in main memory, the proto-
col need not do anything. Now that the
protocol has evicted all the cached lines re-
mapped to C ′ from the caches of P0 and P1
and updated the data of C ′ with the most
recent values, it is ready to reply to P0 with
C ′. Finally, the protocol updates the AM
bits of all the directory entries of the cache
lines re-mapped to C ′. Because C ′ is now
cached, the AM bits of C0, C1, . . . , C15 are
set and that of C ′ is clear. This guaran-
tees correctness for future accesses to any
of these cache lines.

We have described how our Matrix
Transpose protocol enforces mutual exclu-
sion between the caching states of nor-
mal and re-mapped lines. However, this is
overly strict since it is legal to cache both
normal and re-mapped lines provided both
are in the shared state. We find though
that for Matrix Transpose, enforcing mu-
tual exclusion achieves higher performance
because all transpose applications we have
examined have the following sharing pat-
tern: a processor first reads the normal
space cache lines from the portion of the
data set assigned to it, eventually writes
to it and then moves on to read and even-
tually update the re-mapped space cache
lines. Therefore, accesses tend to “migrate”
from one space to another. When the active
memory controller sees a read request for
normal or re-mapped space it knows that
eventually there will be an upgrade request

for the same cache line. Further, there will
be no access from the other space between
the read and the upgrade. So our cache co-
herence protocol extensions choose to inval-
idate all the cache lines in the other space
mapped to the requested line at the time
of read. This keeps the upgrade handler
much simpler because it does not have to
worry about invalidating the shared cache
lines. However, we found that Sparse Ma-
trix Scatter/Gather does not exhibit a mi-
gratory sharing pattern, and therefore we
relax the mutual exclusion constraint in
that case. This illustrates an advantage of
flexible memory controllers that can adapt
the coherence protocol to the needs of the
application.

2.3 Multi-node Protocol Ex-
tensions

This section discusses issues related to
multi-node extensions of our single-node ac-
tive memory protocol. Our base multi-
node protocol is an MSI invalidation-based
bitvector running under release consistency
with a directory entry size of 8 bytes (per
128B of cache line). To reduce the oc-
cupancy at the home node, invalidation
acknowledgments are collected at the re-
quester. To reduce the number of nega-
tive acknowledgments in the system, the
home node forwards writebacks to a re-
quester whose interventions were sent too
late, and the dirty third node buffers early
interventions that arrive before data replies.

Our initial findings on multi-node active
memory protocol extensions suggest that
special care should be taken when assign-
ing pages to home nodes. All cache lines
mapped to each other should be co-located
on the same node; otherwise, a request for
a local memory line may require network
transactions to consult the directory states
of other remote lines that are mapped to
it. This would complicate the protocol han-
dlers as well as degrade performance. Fur-
ther complications can arise while gather-



ing invalidation acknowledgments on multi-
node systems. The active memory proto-
col needs to invalidate cache lines that are
mapped to the requested line and cached
by one or more processors. But the re-
quested line and the lines to be invalidated
have different addresses. Therefore, invali-
dation acknowledgment and invalidation re-
quest messages should carry different ad-
dresses or at the time of gathering invali-
dation acknowledgments a mapping proce-
dure has to be invoked so that the inval-
idation requests get matched to the cor-
responding acknowledgments. Finally, we
also need to give special consideration to
remote interventions. While conventional
protocols may have to send at most one in-
tervention per memory request, the active
memory protocol may have to send multiple
interventions whose addresses are different
but mapped to the requested line. There-
fore, the intervention reply handler must
gather all the intervention replies before re-
plying with the requested line.

3 Protocol Evaluation

This section discusses protocol memory
overhead and protocol-related performance
issues. Additional memory overhead in the
active memory protocol stems from an in-
crease in protocol handler code size, direc-
tory space overhead for re-mapped cache
lines, and the space required to store map-
ping information in a table accessible by the
embedded protocol processor. As an exam-
ple of the increase in handler code size, the
base protocol code size is 20KB, but adding
the protocol extensions to support the ac-
tive memory Matrix Transpose discussed
in Section 2 yields a protocol code size
of 33KB. Sparse Matrix Scatter/Gather,
Linked List Linearization and Memory-side
Merge have protocol code sizes of 24KB,
24KB, and 26KB respectively. The direc-
tory space overhead depends on the size
of the re-mapped address space. Finally,

the mapping table is only 128 bytes in size.
This additional memory overhead is inde-
pendent of the number of nodes in the sys-
tem, except that the small mapping table
must be replicated on every node of the sys-
tem.

There are many performance issues for
active memory protocols that do not impact
conventional DSM protocols. We briefly
discuss some of these here. One major po-
tential performance bottleneck is the occu-
pancy of the memory controller. To service
a request for a particular cache line, the
protocol may have to consult the directory
entries of all the re-mapped cache lines (16
in the previous example) and may have to
take different kinds of actions based on the
directory states. Performing all these direc-
tory lookups in the software running on our
programmable memory controller was too
slow. Instead, our controller has a special-
ized pipelined hardware address calculation
unit that computes 16 re-mapped cache line
addresses, loads directory entries in special
hardware registers and initiates any neces-
sary data memory accesses. Our software
protocol handlers tightly control this ac-
tive memory data unit, striking a balance
between flexibility and performance. As
an example of the average controller oc-
cupancy, in a single-node system for 1, 2
and 4 processors for the normal executions
controller occupancy is 7.7%, 21.3% and
43.2% of the total execution time respec-
tively, while for the active memory execu-
tions it is 15.5%, 29.4% and 47.8%, though
one must remember that the active memory
execution time is smaller, and therefore oc-
cupancy percentages are naturally higher.

Another important performance issue is
the behavior of the directory data cache,
which is accessed only by the programmable
embedded processor core on the memory
controller. Since an access to one direc-
tory entry may necessitate accesses to mul-
tiple re-mapped directory entries (16 in the
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Figure 3. Active Memory Uniprocessor Speedup
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Figure 4. Active Memory Multiprocessor Speedup

above example) that may not correspond to
directory entries for contiguous cache lines,
the directory data cache may suffer from
poor locality and hence large numbers of
misses. The choice of byte-sized directory
entries mitigates this problem in unipro-
cessor or single-node multiprocessor active
memory systems. However, directory data
cache performance may become an issue for
extremely large problem sizes on small ma-
chines as the directory width increases for
multi-node active memory systems.

Finally, an active memory protocol may
have to send multiple interventions (a max-
imum of 16 in the above example) and ev-
ery local intervention requires a data buffer
that is filled by the processor-bus interface
when the processor sends the intervention
reply. This puts heavy pressure on the
number of data buffers needed on the mem-
ory controller. We decided to keep four
buffers reserved for this purpose and recycle
them if a handler needs to send more than
four interventions.

Table 1. L2 Cache Read Miss Count
App. Normal AM Reduction

Factor
FFTW 5644644 1421816 3.97

CG 13886869 3628477 3.83
MST 48582789 11829608 4.11

4 Simulation Results

We present representative simulated per-
formance results for uniprocessor as well
as single-node multiprocessor active mem-
ory systems in Figure 3 and Figure 4, re-
spectively. FFT and FFTW use Matrix
Transpose, Conjugate Gradient (CG) uses
Sparse Matrix Scatter/Gather while Min-
imum Spanning Tree (MST) uses Linked
List Linearization. The Reduction micro-
benchmark uses parallel reduction and
shows the speedup for Memory-side Merge.
Our simulator models contention in detail
within the active memory controller, be-
tween the controller and its external inter-
faces, at main memory, and for the sys-
tem bus. Further details on the simula-
tion environment and the simulated appli-
cations can be found in [5]. In Figure 3
the “AM+Prefetch” bars correspond to the
speedup achieved by our AM techniques
along with exploiting new prefetching op-
portunities created by our AM optimiza-
tions (e.g. for Matrix Transpose it is now
possible to prefetch re-mapped rows that
were columns in the original matrix). Ta-
bles 1 and 2 show a comparison of L2 cache
misses for Normal and non-prefetched AM
executions, while Table 3 compares the data
TLB miss penalty seen by the main proces-
sor for the two executions on a single pro-
cessor corresponding to the results shown in
Figure 3. All the tables show the reduction
factor achieved by AM over normal execu-
tion for uniprocessor simulations.

For the parallel reduction microbench-
mark (shown in Figure 4) the speedup of
the normal application flattens out beyond
two processors while the AM technique con-
tinues to achieve good speedup (3.83) for



Table 2. L2 Cache Write Miss Count
App. Normal AM Reduction

Factor
FFTW 5369071 1156683 4.64

CG 211323 136731 1.55
MST 12544 8947 1.40

Table 3. Data TLB Miss Penalty in a Million Processor
Cycles

App. Normal AM Reduction
(% of texec) (% of texec) Factor

FFTW 721.51 13.42 53.76
(15.72%) (0.51%)

CG 26.63 12.56 2.12
(0.46%) (0.48%)

MST 838.58 714.03 1.17
(4.47%) (14.22%)

a quad-processor node. This clearly shows
that even for a quad-processor node the
controller occupancy does not become a
bottleneck. Both uniprocessor and multi-
processor results demonstrate the clear suc-
cess of our coherence-leveraged active mem-
ory technique. Further, the multiprocessor
speedup shows that our active memory pro-
tocols gracefully scale as the number of pro-
cessors increases.

5 Conclusions
Active memory techniques, while im-

proving application data access patterns,
introduce a data coherence problem. Since
the memory controller handles every cache
miss and runs the coherence protocol, it
has complete control over which memory
lines can be cached by a particular pro-
cessor in the system and in what state.
Our approach enforces the mutual exclu-
sion between the caching states of the re-
mapped memory lines by naturally extend-
ing the conventional DSM coherence pro-
tocol, thereby efficiently solving the coher-
ence problem. However, the design of ac-
tive memory protocols raises some unique
issues that are quite different in nature
from a conventional DSM coherence pro-
tocol. The advantage of using software
coherence protocols over hardware finite
state machines is that the former can sup-

port new active memory techniques with-
out changes to the memory controller hard-
ware. This paper presents representative
results on uniprocessors and single-node
multiprocessors that confirm that our ap-
proach scales and performs well. Further,
this protocol extension naturally lends itself
to the research and development of multi-
node active memory systems that we call
Active Memory Clusters [3], which have
the ability to attain hardware DSM perfor-
mance on commodity clusters.
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