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Predicting Performance
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Where to begin?

You’re done writing code, now what?

Does it work?

Is it fast?

What does fast mean?

60x faster than the CPU is pretty good
What are you leaving on the table?
How close is it to theoretical?
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Predicting Performance

It is very useful to predict theoretical performance when 
working on shaders

Spreadsheets are quite useful for this
Compute theoretical performance
Compute pixels per clock, etc
Easy to see how close an implementation is to peak 
performance

Quite easy with CAL/Brook+ since you can get the ISA even 
if you use a high-level language
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Breaking down GPGPU performance
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GPGPU applications generally progress through the 
hardware in a predictable fashion, unlike rendering
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Breaking down GPGPU performance

GPGPU applications generally progress through the 
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

What we know…

# of ALU, TEX, and Write operations
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Breaking down GPGPU performance

GPGPU applications generally progress through the 
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated
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# of ALU, TEX, and Write operations
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Breaking down GPGPU performance

GPGPU applications generally progress through the 
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

What we know…

# of ALU, TEX, and Write operations
GPUShaderAnalyzer great for this

What do we need to find out?
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

5



Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

6



Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 ALU Shader
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 ALU Shader

7

(#pixels)x(#ALU instructions)
(ALU/clk)x(3D engine speed)

(1920x1088)x(1)
(48)x(625Mhz)

=

0.07ms=
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks 

Example:
1 TEX Shader
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Calculating Theoretical Performance
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1 TEX Shader
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks 

Example:
1 TEX Shader
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(#pixels)x(#TEX instructions)
(TEX/clk)x(3D engine speed

=
(1920x1088)x(1)
(16)x(625Mhz)

= 0.21ms
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks 

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks 

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

(#pixels)x(in + out bits per pixel)
(bus)x(memory speed)
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks 

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

(#pixels)x(in + out bits per pixel)
(bus)x(memory speed)

=
(1920x1088)x(16 bits)

(256)x(750 Mhz x 2DDR)
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Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP) 
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks 

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

(#pixels)x(in + out bits per pixel)
(bus)x(memory speed)

=
(1920x1088)x(16 bits)

(256)x(750 Mhz x 2DDR)
= 0.085 ms
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Calculating Theoretical Performance
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Calculating Theoretical Performance

Overall Theoretical Performance 
max(ALU,TEX,Memory)
–each operation happens in parallel

max(0.07, 0.21, 0.085)
0.21 ms - Texture bound
–Texture units is the limitation
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Calculating Theoretical Performance

Overall Theoretical Performance 
max(ALU,TEX,Memory)
–each operation happens in parallel

max(0.07, 0.21, 0.085)
0.21 ms - Texture bound
–Texture units is the limitation

Remember, this is only a starting point!
ALU and TEX calculation is reasonable
–Actually usually very close

Memory assumes peak
–depends on access pattern, etc

Conditional operations can complicate things
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Decoder Ring

11

GPU Engine 
Clock

Memory 
Clock

Memory 
Width ALUs TEX ROPs

R600 
HD2900 750 850 512 64 16 16

R610 
HD2600 700 1100 64 8 4 4

R630 
HD2400 800 1100 128 24 8 4

R670 
HD3870 750 1150 256 64 16 16



Performance ModelingFebruary 15, 2008 University of Central Florida

Decoder Ring

11

GPU Engine 
Clock

Memory 
Clock

Memory 
Width ALUs TEX ROPs

R600 
HD2900 750 850 512 64 16 16

R610 
HD2600 700 1100 64 8 4 4

R630 
HD2400 800 1100 128 24 8 4

R670 
HD3870 750 1150 256 64 16 16

How long would a 1 ALU shader that outputs 1 byte take on 
R610?  What’s the bottleneck?
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Decoder Ring

12

GPU Engine 
Clock

Memory 
Clock

Memory 
Width ALUs TEX ROPs

R600 
HD2900 750 850 512 64 16 16

R610 
HD2600 700 1100 64 8 4 4

R630 
HD2400 800 1100 128 24 8 4

R670 
HD3870 750 1150 256 64 16 16

How long would a 2 ALU shader that outputs 1 byte take on 
R610?  What’s the bottleneck?
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The Value of System / Remote Memory
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Radial Correction

System Requirements:
Capture video from one or more cameras.  
Transfer images to GPU
Convert bayer-pattern images to RGB images
Remove lens distortions
Return to host for further processing

System needs to use limited power
Mobile GPU

Want to minimize correction time
 Images further processed in a large real-time system
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Naive Implementation
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Input images
(system memory)

Output images
(system memory)
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15

Input images
(system memory)

Output images
(system memory)

Input images
(GPU memory)

Intermediate
(GPU memory)

Output images
(GPU memory)

copy

Debayer
kernel

Undistort
kernel

???



Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

Input images
(GPU memory)

Intermediate
(GPU memory)

Output images
(GPU memory)

copy

Debayer
kernel

Undistort
kernel

copy

???
Output images
(system memory)
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Output images
(system memory)

Faster Implementation
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???
Input images

(system memory)
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Output images
(system memory)

Faster Implementation
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Undistort
kernel

???

Intermediate
(GPU memory)

Debayer
kernel

Input images
(system memory)

Output images
(system memory)

Accessing system memory directly is 1.8x 
faster than naive implementation! 

(2.74 ms vs. 4.96 ms)
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Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when 
rendering graphics
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Not a system memory 
“friendly” traversal
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“Forcing” Raster pattern

“Force” the rasterizer to be more friendly with system 
memory traversal
Use strips of geometry (CTM can directly stamp quads)
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“Forcing” Raster pattern

“Force” the rasterizer to be more friendly with system 
memory traversal
Use strips of geometry (CTM can directly stamp quads)
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Effect of “Forcing” Raster pattern

2048x2048 float32x4 “copy” shader
Reads input in local GPU memory, writes to system 
memory

RD580 with an R580

Full screen quad time = 45.51 ms 
~1.5 GB/sec readback

“Raster-Blocks” time =  26.53 ms
~2.5 GB/sec readback

Technique could also be used to optimize shaders with non-
standard to local memory accesses

Need to be aware of how threads are assigned to 
wavefronts / warps / vectors
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1.7x faster


