AMDT

Smarter Choice

February 15, 2008 Performance Modeling University of Central Florida @%ﬁ

You're done writing code, now what?
Does it work?

Is it fast?

What does fast mean?

60x faster than the CPU is pretty good
* What are you leaving on the table?
* How close is it to theoretical?

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

AMD

Smarter Choice

It is very useful to predict theoretical performance when
working on shaders

Spreadsheets are quite useful for this
* Compute theoretical performance
* Compute pixels per clock, etc

* Easy to see how close an implementation is to peak
performance

Quite easy with CAL/Brook+ since you can get the ISA even
if you use a high-level language

h February 15, 2008 Performance Modeling

Breaking down GPGPU performance A!:'PCF'

February 15, 2008 Performance Modeling University of Central Florida @)
S

Breaking down GPGPU performance A!:'Poha

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida &%
=

Breaking down GPGPU performance AsmtDoha

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida &%
S

Breaking down GPGPU performance A!:'RF'

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida &%
S

Breaking down GPGPU performance A!:‘RF'

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida &%
S

Breaking down GPGPU performance A!:ltDoha

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida @l
S

Breaking down GPGPU performance A!:ltDoha

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida @l
S

Breaking down GPGPU performance A!:'PCF'

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

February 15, 2008 Performance Modeling University of Central Florida @)
S

Breaking down GPGPU performance A!:'RF'

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

heoretical performance can be calculated

February 15, 2008 Performance Modeling University of Central Florida Q%
S

Breaking down GPGPU performance A!:‘RF'

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

heoretical performance can be calculated

What we know...

February 15, 2008 Performance Modeling University of Central Florida &%
S

Breaking down GPGPU performance A!:‘PCF'

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

heoretical performance can be calculated

What we know...

of ALU, TEX, and Write operations

February 15, 2008 Performance Modeling University of Central Florida @1
S

Breaking down GPGPU performance AEﬂRF‘

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

heoretical performance can be calculated

What we know...

of ALU, TEX, and Write operations
* GPUShaderAnalyzer great for this

February 15, 2008 Performance Modeling University of Central Florida gﬁ
S

Breaking down GPGPU performance AEﬂRF‘

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

heoretical performance can be calculated

What we know...

of ALU, TEX, and Write operations
* GPUShaderAnalyzer great for this

What do we need to find out?

February 15, 2008 Performance Modeling University of Central Florida Qﬁ
S

Calculating Theoretical Performance A!:'RF

Radeon X1900XT (R580)
*8:48:16:16 (VER:ALU:TEX:ROP)
* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

February 15, 2008 Performance Modeling University of Central Florida &q}
=

Calculating Theoretical Performance A!:'RF

Radeon X1900XT (R580)
*3:48:16:16 (VER:ALU:TEX:ROP)
* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

u February 15, 2008 Performance Modeling University of Central Florida &%
=

Calculating Theoretical Performance AstC!"'

Radeon X1900XT (R580)
*3:48:16:16 (VER:ALU:TEX:ROP)
* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
*1 ALU Shader

February 15, 2008 Performance Modeling University of Central Florida &%
=

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
*1 ALU Shader

(#pixels)r(#FALU instructions)
(ALU /clk)x(3D engine speed)

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
*1 ALU Shader

(#pizels)x(#ALU instructions) (192021088)x(1)

(ALU /clk)x (3D engine speed) — (48)x(625M hz)

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
*1 ALU Shader

(#pizels)x(#ALU instructions) (192021088)x(1)
(ALU /clk)x(3D engine speed) (48)x(625M hz)

0.07ms

h February 15, 2008 Performance Modeling

Calculating Theoretical Performance AstC!"'

Radeon X1900XT (R580)
*3:48:16:16 (VER:ALU:TEX:ROP)
* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 TEX Shader

! February 15, 2008 Performance Modeling University of Central Florida &%
=

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* 1 TEX Shader

(#pizels)x(#TEX instructions)
(TEX/clk)x(3D engine speed

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* 1 TEX Shader

(#pixels)x(#TEX instructions) (192021088)xz(1)

(TEX/clk)x (3D engine speed ~ (16)x(625M hz)

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* 1 TEX Shader

(#pixels)x(#TEX instructions) (192021088)xz(1)
(TEX/clk)x(3D engine speed (16)x(625M hz)

0.21ms

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* Memory Performance - 1 Byte in 1 Byte out (Copy)

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* Memory Performance - 1 Byte in 1 Byte out (Copy)

(#pizels)x(in + out bits per pixel)

(bus)x(memory speed)

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* Memory Performance - 1 Byte in 1 Byte out (Copy)

(#pizels)x(in + out bits per pixel)

(bus)x(memory speed)
(192021088)x(16 bits)
(256)x(750 Mhz x 2DDR)

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Radeon X1900XT (R580)

*3:48:16:16 (VER:ALU:TEX:ROP)

* 256 bit memory bus

*625 MHz Engine / 750 Mhz Memory Clocks

Example:
* Memory Performance - 1 Byte in 1 Byte out (Copy)

(#pizels)x(in + out bits per pixel)

(bus)x(memory speed)
(192021088)x(16 bits)
(256)x(750 Mhz x 2DDR)

= 0.089 ms

h February 15, 2008 Performance Modeling

Calculating Theoretical Performance AQRF

February 15, 2008 Performance Modeling University of Central Florida @)
S

AMD

Smarter Choice

Overall Theoretical Performance
* max(ALU, TEX,Memory)
—each operation happens in parallel
*max(0.07, 0.21, 0.085)
*0.21 ms - Texture bound
—-Texture units is the limitation

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

Overall Theoretical Performance
* max(ALU, TEX,Memory)
—each operation happens in parallel
*max(0.07, 0.21, 0.085)
*0.21 ms - Texture bound
—-Texture units is the limitation

Remember, this is only a starting point!

* ALU and TEX calculation is reasonable
—Actually usually very close

* Memory assumes peak
—depends on access pattern, etc

* Conditional operations can complicate things

h February 15, 2008 Performance Modeling

Decoder Ring AQRP

R 9y | 750 850 512 64 | 16 16
Ro 00| 700 1100 64 8 4 4
RO ey | 800 1100 128 24 8 4
R 0| 750 1150 256 64 | 16 16

February 15, 2008 Performance Modeling University of Central Florida &9}
|

Decoder Ring AmRF

R 9y | 750 850 512 64 | 16 16
Ro 00| 700 1100 64 8 4 4
RO ey | 800 1100 128 24 8 4
R 0| 750 1150 256 64 | 16 16

February 15, 2008 Performance Modeling University of Central FlOfidag’Q]

Decoder Ring AQRP

R 9y | 750 850 512 64 | 16 16
Ro 00| 700 1100 64 8 4 4
RO ey | 800 1100 128 24 8 4
R 0| 750 1150 256 64 | 16 16

February 15, 2008 Performance Modeling University of Central Florida &9}
|

Decoder Ring AmRF

R 9y | 750 850 512 64 | 16 16
Ro 00| 700 1100 64 8 4 4
RO ey | 800 1100 128 24 8 4
R 0| 750 1150 256 64 | 16 16

February 15, 2008 Performance Modeling University of Central FlOfidag’Q]

AMDT

Smarter Choice

February 15, 2008 Performance Modeling University of Central Florida '@%

AMD

Smarter Choice

System Requirements:

* Capture video from one or more cameras.

* Transfer images to GPU

* Convert bayer-pattern images to RGB images
* Remove lens distortions

* Return to host for further processing

System needs to use limited power
* Mobile GPU

Want to minimize correction time
* Images further processed in a large real-time system

h February 15, 2008 Performance Modeling

Naive Implementation A!:'DCE"'

D February 15, 2008 Performance Modeling University of Central Florida &%
S

Naive Implementation A!:'DCE"'

D February 15, 2008 Performance Modeling University of Central Florida &%
S

i i n
Naive Implementation AMD

Input images
(GPU memory)

h February 15, 2008 Performance Modeling University of Central Florida &%
S

i} i} : 1 |
Naive Implementation As':!rte[?cm

Input images
(GPU memory)

N

Intermediate

(GPU memory)

h February 15, 2008 Performance Modeling

Naive Implementation AND

Input images Output images
(GPU memory) (GPU memory)

N

Intermediate
(GPU memory)

h February 15, 2008 Performance Modeling

Naive Implementation AND

Input images Output images
(GPU memory) (GPU memory)

N

Intermediate
(GPU memory)

h February 15, 2008 Performance Modeling

Faster Implementation A!:'DCE"'

February 15, 2008 Performance Modeling University of Central Florida &%
S

i bm
Faster Implementation AMD .t

Intermediate

(GPU memory)

h February 15, 2008 Performance Modeling University of Central Florida &%
S

i bm
Faster Implementation AMD .t

Intermediate

(GPU memory)

h February 15, 2008 Performance Modeling University of Central Florida &%
S

Faster Implementation A!:'DCE"'

Accessing system memory directly is 1.8x
faster than naive implementation!
(2.74 ms vs. 4.96 ms)

February 15, 2008 Performance Modeling University of Central Florida &%
S

AMD

Smarter Choice

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

h February 15, 2008 Performance Modeling

Caveat: System Memory ASmDCh

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

h February 15, 2008 Performance Modeling

Caveat: System Memory ASmDCh

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

h February 15, 2008 Performance Modeling

Caveat: System Memory AstCh

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

h February 15, 2008 Performance Modeling

Caveat: System Memory ASmDCh

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

h February 15, 2008 Performance Modeling

Caveat: System Memory ASmDCh

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

o)

h February 15, 2008 Performance Modeling

Caveat: System Memory ASmDCh

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

a Not a system memory

“friendly” traversal

h February 15, 2008 Performance Modeling

“Forcing” Raster pattern A

“Force” the rasterizer to be more friendly with system
memory traversal

* Use strips of geometry (CTM can directly stamp quads)

h February 15, 2008 Performance Modeling

“Forcing” Raster pattern AMD:.

"Force” the rasterizer to be more friendly with system
memory traversal

* Use strips of geometry (CTM can directly stamp quads)

February 15, 2008 Performance Modeling University of Central Florida @)
S

AMD

Smarter Choice

2048x2048 float32x4 “copy” shader

* Reads input in local GPU memory, writes to system
memory

* RD580 with an R580

Full screen quad time = 45.51 ms
*~1.5 GB/sec readback

“Raster-Blocks” time = 26.53 ms
e~2.5 GB/sec readback

echnique could also be used to optimize shaders with non-
standard to local memory accesses

Need to be aware of how threads are assigned to
wavefronts / warps / vectors

h February 15, 2008 Performance Modeling

AMD

Smarter Choice

2048x2048 float32x4 “copy” shader

* Reads input in local GPU memory, writes to system
memory

* RD580 with an R580

Full screen quad time = 45.51 ms
*~1.5 GB/sec readback

“Raster-Blocks” time = 26.53 ms
e~2.5 GB/sec readback

echnique could also be used to optimize shaders with non-
standard to local memory accesses

Need to be aware of how threads are assigned to
wavefronts / warps / vectors

h February 15, 2008 Performance Modeling

