
Performance ModelingFebruary 15, 2008 University of Central Florida

Predicting Performance

1

Performance ModelingFebruary 15, 2008 University of Central Florida

Where to begin?

You’re done writing code, now what?

Does it work?

Is it fast?

What does fast mean?

60x faster than the CPU is pretty good
What are you leaving on the table?
How close is it to theoretical?

2

Performance ModelingFebruary 15, 2008 University of Central Florida

Predicting Performance

It is very useful to predict theoretical performance when
working on shaders

Spreadsheets are quite useful for this
Compute theoretical performance
Compute pixels per clock, etc
Easy to see how close an implementation is to peak
performance

Quite easy with CAL/Brook+ since you can get the ISA even
if you use a high-level language

3

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

4

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

ALU

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

ALU TEX

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

ALU TEX MEM

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

ALU ALUTEX MEM

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

ALU ALUTEX MEM ...

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

4

ALU ALUTEX MEM MEM...

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

4

ALU ALUTEX MEM MEM...

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

What we know…

4

ALU ALUTEX MEM MEM...

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

What we know…

of ALU, TEX, and Write operations

4

ALU ALUTEX MEM MEM...

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

What we know…

of ALU, TEX, and Write operations
GPUShaderAnalyzer great for this

4

ALU ALUTEX MEM MEM...

Performance ModelingFebruary 15, 2008 University of Central Florida

Breaking down GPGPU performance

GPGPU applications generally progress through the
hardware in a predictable fashion, unlike rendering

Theoretical performance can be calculated

What we know…

of ALU, TEX, and Write operations
GPUShaderAnalyzer great for this

What do we need to find out?

4

ALU ALUTEX MEM MEM...

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

5

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

6

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 ALU Shader

7

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 ALU Shader

7

(#pixels)x(#ALU instructions)
(ALU/clk)x(3D engine speed)

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 ALU Shader

7

(#pixels)x(#ALU instructions)
(ALU/clk)x(3D engine speed)

(1920x1088)x(1)
(48)x(625Mhz)

=

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 ALU Shader

7

(#pixels)x(#ALU instructions)
(ALU/clk)x(3D engine speed)

(1920x1088)x(1)
(48)x(625Mhz)

=

0.07ms=

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 TEX Shader

8

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 TEX Shader

8

(#pixels)x(#TEX instructions)
(TEX/clk)x(3D engine speed

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 TEX Shader

8

(#pixels)x(#TEX instructions)
(TEX/clk)x(3D engine speed

=
(1920x1088)x(1)
(16)x(625Mhz)

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
1 TEX Shader

8

(#pixels)x(#TEX instructions)
(TEX/clk)x(3D engine speed

=
(1920x1088)x(1)
(16)x(625Mhz)

= 0.21ms

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

(#pixels)x(in + out bits per pixel)
(bus)x(memory speed)

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

(#pixels)x(in + out bits per pixel)
(bus)x(memory speed)

=
(1920x1088)x(16 bits)

(256)x(750 Mhz x 2DDR)

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Radeon X1900XT (R580)
8:48:16:16 (VER:ALU:TEX:ROP)
256 bit memory bus
625 MHz Engine / 750 Mhz Memory Clocks

Example:
Memory Performance - 1 Byte in 1 Byte out (Copy)

9

(#pixels)x(in + out bits per pixel)
(bus)x(memory speed)

=
(1920x1088)x(16 bits)

(256)x(750 Mhz x 2DDR)
= 0.085 ms

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

10

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Overall Theoretical Performance
max(ALU,TEX,Memory)
–each operation happens in parallel

max(0.07, 0.21, 0.085)
0.21 ms - Texture bound
–Texture units is the limitation

10

Performance ModelingFebruary 15, 2008 University of Central Florida

Calculating Theoretical Performance

Overall Theoretical Performance
max(ALU,TEX,Memory)
–each operation happens in parallel

max(0.07, 0.21, 0.085)
0.21 ms - Texture bound
–Texture units is the limitation

Remember, this is only a starting point!
ALU and TEX calculation is reasonable
–Actually usually very close

Memory assumes peak
–depends on access pattern, etc

Conditional operations can complicate things

10

Performance ModelingFebruary 15, 2008 University of Central Florida

Decoder Ring

11

GPU Engine
Clock

Memory
Clock

Memory
Width ALUs TEX ROPs

R600
HD2900 750 850 512 64 16 16

R610
HD2600 700 1100 64 8 4 4

R630
HD2400 800 1100 128 24 8 4

R670
HD3870 750 1150 256 64 16 16

Performance ModelingFebruary 15, 2008 University of Central Florida

Decoder Ring

11

GPU Engine
Clock

Memory
Clock

Memory
Width ALUs TEX ROPs

R600
HD2900 750 850 512 64 16 16

R610
HD2600 700 1100 64 8 4 4

R630
HD2400 800 1100 128 24 8 4

R670
HD3870 750 1150 256 64 16 16

How long would a 1 ALU shader that outputs 1 byte take on
R610? What’s the bottleneck?

Performance ModelingFebruary 15, 2008 University of Central Florida

Decoder Ring

12

GPU Engine
Clock

Memory
Clock

Memory
Width ALUs TEX ROPs

R600
HD2900 750 850 512 64 16 16

R610
HD2600 700 1100 64 8 4 4

R630
HD2400 800 1100 128 24 8 4

R670
HD3870 750 1150 256 64 16 16

Performance ModelingFebruary 15, 2008 University of Central Florida

Decoder Ring

12

GPU Engine
Clock

Memory
Clock

Memory
Width ALUs TEX ROPs

R600
HD2900 750 850 512 64 16 16

R610
HD2600 700 1100 64 8 4 4

R630
HD2400 800 1100 128 24 8 4

R670
HD3870 750 1150 256 64 16 16

How long would a 2 ALU shader that outputs 1 byte take on
R610? What’s the bottleneck?

Performance ModelingFebruary 15, 2008 University of Central Florida

The Value of System / Remote Memory

13

Performance ModelingFebruary 15, 2008 University of Central Florida

Radial Correction

System Requirements:
Capture video from one or more cameras.
Transfer images to GPU
Convert bayer-pattern images to RGB images
Remove lens distortions
Return to host for further processing

System needs to use limited power
Mobile GPU

Want to minimize correction time
 Images further processed in a large real-time system

14

Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

???

Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

Input images
(GPU memory)

copy

???

Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

Input images
(GPU memory)

Intermediate
(GPU memory)

copy

Debayer
kernel

???

Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

Input images
(GPU memory)

Intermediate
(GPU memory)

Output images
(GPU memory)

copy

Debayer
kernel

Undistort
kernel

???

Performance ModelingFebruary 15, 2008 University of Central Florida

Naive Implementation

15

Input images
(system memory)

Output images
(system memory)

Input images
(GPU memory)

Intermediate
(GPU memory)

Output images
(GPU memory)

copy

Debayer
kernel

Undistort
kernel

copy

???
Output images
(system memory)

Performance ModelingFebruary 15, 2008 University of Central Florida

Output images
(system memory)

Faster Implementation

16

???
Input images

(system memory)

Performance ModelingFebruary 15, 2008 University of Central Florida

Output images
(system memory)

Faster Implementation

16

???

Intermediate
(GPU memory)

Debayer
kernel

Input images
(system memory)

Performance ModelingFebruary 15, 2008 University of Central Florida

Output images
(system memory)

Faster Implementation

16

Undistort
kernel

???

Intermediate
(GPU memory)

Debayer
kernel

Input images
(system memory)

Output images
(system memory)

Performance ModelingFebruary 15, 2008 University of Central Florida

Output images
(system memory)

Faster Implementation

16

Undistort
kernel

???

Intermediate
(GPU memory)

Debayer
kernel

Input images
(system memory)

Output images
(system memory)

Accessing system memory directly is 1.8x
faster than naive implementation!

(2.74 ms vs. 4.96 ms)

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

17

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

17

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

17

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

17

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

18

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

18

Performance ModelingFebruary 15, 2008 University of Central Florida

Caveat: System Memory

Performance is chipset dependent

Rasterizers optimized for texture cache performance when
rendering graphics

18

Not a system memory
“friendly” traversal

Performance ModelingFebruary 15, 2008 University of Central Florida

“Forcing” Raster pattern

“Force” the rasterizer to be more friendly with system
memory traversal
Use strips of geometry (CTM can directly stamp quads)

19

Performance ModelingFebruary 15, 2008 University of Central Florida

“Forcing” Raster pattern

“Force” the rasterizer to be more friendly with system
memory traversal
Use strips of geometry (CTM can directly stamp quads)

19

Performance ModelingFebruary 15, 2008 University of Central Florida

Effect of “Forcing” Raster pattern

2048x2048 float32x4 “copy” shader
Reads input in local GPU memory, writes to system
memory

RD580 with an R580

Full screen quad time = 45.51 ms
~1.5 GB/sec readback

“Raster-Blocks” time = 26.53 ms
~2.5 GB/sec readback

Technique could also be used to optimize shaders with non-
standard to local memory accesses

Need to be aware of how threads are assigned to
wavefronts / warps / vectors

20

Performance ModelingFebruary 15, 2008 University of Central Florida

Effect of “Forcing” Raster pattern

2048x2048 float32x4 “copy” shader
Reads input in local GPU memory, writes to system
memory

RD580 with an R580

Full screen quad time = 45.51 ms
~1.5 GB/sec readback

“Raster-Blocks” time = 26.53 ms
~2.5 GB/sec readback

Technique could also be used to optimize shaders with non-
standard to local memory accesses

Need to be aware of how threads are assigned to
wavefronts / warps / vectors

20

1.7x faster

