
1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lectures 8:
Memory Hardware in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

2

CUDA Device Memory Space: Review
• Each thread can:

– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and
texture memories

2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

3

Parallel Memory Sharing
• Local Memory: per-thread (slow ,

in DRAM)
– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block (fast)
– Shared by threads of the same

block
– Inter-thread communication

• Global Memory: per-application
– Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
Global

Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

4

HW Overview

TPC TPC TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

5

SM Memory Architecture

• Threads in a Block share data &
results
– In Memory and Shared Memory
– Synchronize at barrier instruction

• Per-Block Shared Memory
Allocation
– Keeps data close to processor
– Minimize trips to global Memory
– SM Shared Memory dynamically

allocated to Blocks, one of the
limiting resources

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

6

SM Register File

• Register File (RF)
– 32 KB
– Provides 4 operands/clock

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

7

Programmer View of Register File

• There are 8192 registers in
each SM in G80
– This is an implementation

decision, not part of CUDA
– Registers are dynamically

partitioned across all Blocks
assigned to the SM

– Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

– Each thread in the same Block
only access registers assigned
to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

8

Matrix Multiplication Example
• If each Block has 16X16 threads and each thread uses

10 registers, how many thread can run on each SM?
– Each Block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are

concerned
• How about if each thread increases the use of registers

by 1?
– Each Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of

parallelism!!!

5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

9

More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to
compilers/programmers
– One can run a smaller number of threads that require many

registers each or a large number of threads that require few
registers each

• This allows for finer grain threading than traditional CPU threading
models.

– The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

10

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global laods have
200 cycles
– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load
– Only two can run on each SM
– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory

latency
– Two Blocks have 16 Warps. The performance can be actually higher!

6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11

Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads
in a Warp
– Extremely efficient way of accessing a value that is

common for all threads in a Block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

12

Shared Memory

• Each SM has 16 KB of Shared Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as shared
storage visible to all threads in a thread
block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other ☺

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

7

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

13

Multiply Using Several Blocks
• One block computes one square

sub-matrix Psub of size BLOCK_SIZE

• One thread computes one element
of Psub

• Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

14

Matrix Multiplication
Shared Memory Usage

• Each Block requires 2* WIDTH2 * 4 bytes of shared
memory storage
– For WIDTH = 16, each BLOCK requires 2KB, up to 8

Blocks can fit into the Shared Memory of an SM
– Since each SM can only take 768 threads, each SM can only

take 3 Blocks of 256 threads each
– Shared memory size is not a limitation for Matrix

Multiplication of

8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

15

Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

16

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

9

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

17

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

18

How addresses map to banks on G80
• Each bank has a bandwidth of 32 bits per clock cycle
• Successive 32-bit words are assigned to successive

banks
• G80 has 16 banks

– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a
single half-warp

10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

19

Shared memory bank conflicts
• Shared memory is as fast as registers if there are no bank

conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank

conflict
– If all threads of a half-warp access the identical address, there is no

bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the same

bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

20

Linear Addressing
• Given:

__shared__ float shared[256];
float foo =
shared[baseIndex + s *
threadIdx.x];

• This is only bank-conflict-free if s
shares no common factors with the
number of banks
– 16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

21

Data types and bank conflicts
• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

22

Structs and Bank Conflicts
• Struct assignments compile into as many memory accesses as there are

struct members:

struct vector { float x, y, z; };
struct myType {

float f;
int c;

};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

12

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

23

Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into
shared mem:
– 2-way-interleaved loads result in

2-way bank conflicts:

int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU
threads, locality in cache line usage and
reduced sharing traffice.
– Not in shared memory usage where there is

no cache line effects but banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

24

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements

13

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

25

A Better Array Access Pattern
• Each thread loads one element in

every consecutive group of
bockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] =
global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

26

No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

14

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27

Common Bank Conflict Patterns (2D)
• Operating on 2D array of floats in

shared memory
– e.g. image processing

• Example: 16x16 block
– Assume that each thread processes a row
– So threads in a block access all element of a

column simultaneously (example: row 1 in
purple)

– All 16 of these elements are mapped into
the same bank

– 16-way bank conflicts: rows all start at
bank 0

Bank Indices without Padding

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28

Common Bank Conflict Patterns (2D)
• Solution 1) pad the rows

– Add one float to the end of each row
• Solution 2) transpose before processing

– Suffer bank conflicts during transpose
– But possibly save them later

0 1 2 3 4 5 6 7 15
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 10 2
4 5 6 7 8 9 10 11 3
5 6 7 8 9 10 11 12 4
6 7 8 9 10 11 12 13 5
7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0
1
2
3
4
5
6
8

15

Matrix view:
Bank Indices with Padding

0 1 2 3 4 5 6 7 15
16 0 1 2 3 4 5 6 14
15 16 0 1 2 3 4 5 13
14 15 16 0 1 2 3 4 12
13 14 15 16 0 1 2 3 11
12 13 14 15 16 0 1 2 10
11 12 13 14 15 16 0 1 9
10 11 12 13 14 15 16 0 8

1 2 3 4 5 6 7 8 16

Memory Bank View:
Matrix indices with padding

Row elements

C
ol

um
n

el
em

en
ts

Bank 0 Bank 15…

Now all elements of the same column are in
different banks.

15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

29

Does Matrix Multiplication Incur Shared
Memory Bank Conflicts?

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

All Warps in a Block
access the same row of
Ms – broadcast!

All Warps in a Block
access neighboring
elements in a row as they
access walk through
neighboring columns!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

30

Load/Store (Memory read/write)
Clustering/Batching

• Use LD to hide LD latency (non-dependent LD ops only)
– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)
– Dependent MATH 0
– LD 1 (long latency)
– Dependent MATH 1

• Do:
– LD 0 (long latency)
– LD 1 (long latency - hidden)
– MATH 0
– MATH 1

• Compiler handles this!
– But, you must have enough non-dependent LDs and Math

