CUDA Device Memory Space: Review

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

- The host can R/W global, constant, and texture memories
Parallel Memory Sharing

- Local Memory: per-thread (slow, in DRAM)
 - Private per thread
 - Auto variables, register spill
- Shared Memory: per-Block (fast)
 - Shared by threads of the same block
 - Inter-thread communication
- Global Memory: per-application
 - Shared by all threads
 - Inter-Grid communication

HW Overview
SM Memory Architecture

- Threads in a Block share data & results
 - In Memory and Shared Memory
 - Synchronize at barrier instruction
- Per-Block Shared Memory Allocation
 - Keeps data close to processor
 - Minimize trips to global Memory
 - SM Shared Memory dynamically allocated to Blocks, one of the limiting resources

SM Register File

- Register File (RF)
 - 32 KB
 - Provides 4 operands/clock
- TEX pipe can also read/write RF
 - 2 SMs share 1 TEX
- Load/Store pipe can also read/write RF
Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same Block only access registers assigned to itself

Matrix Multiplication Example

- If each Block has 16X16 threads and each thread uses 10 registers, how many thread can run on each SM?
 - Each Block requires 10*256 = 2560 registers
 - 8192 = 3 * 2560 + change
 - So, three blocks can run on an SM as far as registers are concerned
- How about if each thread increases the use of registers by 1?
 - Each Block now requires 11*256 = 2816 registers
 - 8192 < 2816 *3
 - Only two Blocks can run on an SM, 1/3 reduction of parallelism!!!
More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to compilers/programmers
 – One can run a smaller number of threads that require many
 registers each or a large number of threads that require few
 registers each
 • This allows for finer grain threading than traditional CPU threading
 models.
 – The compiler can tradeoff between instruction-level
 parallelism and thread level parallelism

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent
 instructions for each global memory load in the thread
 program, and each thread uses 10 registers, global laods have
 200 cycles
 – 3 Blocks can run on each SM
• If a Compiler can use one more register to change the
 dependence pattern so that 8 independent instructions exist for
 each global memory load
 – Only two can run on each SM
 – However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
 latency
 – Two Blocks have 16 Warps. The performance can be actually higher!
Constants

- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads in a Block!

Shared Memory

- Each SM has 16 KB of Shared Memory
 - 16 banks of 32bit words
- CUDA uses Shared Memory as shared storage visible to all threads in a thread block
 - read and write access
- Not used explicitly for pixel shader programs
 - we dislike pixels talking to each other 😊
Multiply Using Several Blocks

- One **block** computes one square sub-matrix P_{sub} of size BLOCK_SIZE
- One **thread** computes one element of P_{sub}
- Assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape

Matrix Multiplication

Shared Memory Usage

- Each Block requires $2 * \text{WIDTH}^2 * 4$ bytes of shared memory storage
 - For $\text{WIDTH} = 16$, each BLOCK requires 2KB, up to 8 Blocks can fit into the Shared Memory of an SM
 - Since each SM can only take 768 threads, each SM can only take 3 Blocks of 256 threads each
 - Shared memory size is not a limitation for Matrix Multiplication of
Parallel Memory Architecture

- In a parallel machine, many threads access memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth

- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks

- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

Bank Addressing Examples

- No Bank Conflicts
 - Linear addressing
 - stride == 1

- No Bank Conflicts
 - Random 1:1 Permutation
Bank Addressing Examples

- 2-way Bank Conflicts
 - Linear addressing
 - stride == 2

- 8-way Bank Conflicts
 - Linear addressing
 - stride == 8

How addresses map to banks on G80

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp
Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank conflicts

• The fast case:
 – If all threads of a half-warp access different banks, there is no bank conflict
 – If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)

• The slow case:
 – Bank Conflict: multiple threads in the same half-warp access the same bank
 – Must serialize the accesses
 – Cost = max # of simultaneous accesses to a single bank

Linear Addressing

• Given:

```c
__shared__ float shared[256];
float foo =
  shared[baseIndex + s * threadIdx.x];
```

• This is only bank-conflict-free if s shares no common factors with the number of banks
 – 16 on G80, so s must be odd
Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

```c
foo = shared[baseIndex + threadIdx.x]
```

• But not if the data type is smaller
 – 4-way bank conflicts:
    ```c
    __shared__ char shared[];
    foo = shared[baseIndex + threadIdx.x];
    ```
 – 2-way bank conflicts:
    ```c
    __shared__ short shared[];
    foo = shared[baseIndex + threadIdx.x];
    ```

Structs and Bank Conflicts

• Struct assignments compile into as many memory accesses as there are struct members:

```c
struct vector { float x, y, z; };
struct myType {
    float f;
    int c;
};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];
```

• This has no bank conflicts for vector; struct size is 3 words
 – 3 accesses per thread, contiguous banks (no common factor with 16)
    ```c
    struct vector v = vectors[baseIndex + threadIdx.x];
    ```

• This has 2-way bank conflicts for my Type; 2 accesses per thread
  ```c
  struct myType m = myTypes[baseIndex + threadIdx.x];
  ```
Common Array Bank Conflict Patterns

1D

- Each thread loads 2 elements into shared mem:
 - 2-way-interleaved loads result in 2-way bank conflicts:

```
int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];
```

- This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffic.
 - Not in shared memory usage where there is no cache line effects but banking effects

Vector Reduction with Bank Conflicts

Array elements

```
0  1  2  3  4  5  6  7  8  9 10 11
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
A Better Array Access Pattern

- Each thread loads one element in every consecutive group of blockDim elements.

\[
\text{shared}[\text{tid}] = \text{global}[\text{tid}]; \\
\text{shared}[\text{tid} + \text{blockDim.x}] = \text{global}[\text{tid} + \text{blockDim.x}];
\]

No Bank Conflicts
Common Bank Conflict Patterns (2D)

• Operating on 2D array of floats in shared memory
 – e.g. image processing
• Example: 16x16 block
 – Assume that each thread processes a row
 – So threads in a block access all element of a column simultaneously (example: row 1 in purple)
 – All 16 of these elements are mapped into the same bank
 – 16-way bank conflicts: rows all start at bank 0

Bank Indices without Padding

Solution 1) pad the rows
 – Add one float to the end of each row
Solution 2) transpose before processing
 – Suffer bank conflicts during transpose
 – But possibly save them later

Matrix view:

Memory Bank View:

Now all elements of the same column are in different banks.
Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

All Warps in a Block access the same row of Ms – broadcast!

All Warps in a Block access neighboring elements in a row as they access walk through neighboring columns!

Load/Store (Memory read/write)

Clustering/Batching

- Use LD to hide LD latency (non-dependent LD ops only)
 - Use same thread to help hide own latency
- Instead of:
 - LD 0 (long latency)
 - Dependent MATH 0
 - LD 1 (long latency)
 - Dependent MATH 1
- Do:
 - LD 0 (long latency)
 - LD 1 (long latency - hidden)
 - MATH 0
 - MATH 1
- Compiler handles this!
 - But, you must have enough non-dependent LDs and Math