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CUDA Device Memory Space: Review
• Each thread can:

– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant 

memory
– Read only per-grid texture memory
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Parallel Memory Sharing
• Local Memory:   per-thread (slow , 

in DRAM)
– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block (fast)
– Shared by threads of the same 

block 
– Inter-thread communication

• Global Memory:   per-application
– Shared by all threads
– Inter-Grid communication
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HW Overview
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SM Memory Architecture

• Threads in a Block share data & 
results
– In Memory and Shared Memory
– Synchronize at barrier instruction

• Per-Block Shared Memory 
Allocation
– Keeps data close to processor
– Minimize trips to global Memory
– SM Shared Memory dynamically 

allocated to Blocks, one of the 
limiting resources
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SM Register File

• Register File (RF)
– 32 KB
– Provides 4 operands/clock

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also read/write RF
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Programmer View of Register File

• There are 8192 registers in 
each SM in G80
– This is an implementation 

decision, not part of CUDA
– Registers are dynamically 

partitioned across all Blocks 
assigned to the SM

– Once assigned to a Block, the 
register is NOT accessible by 
threads in other Blocks

– Each thread in the same Block 
only access registers assigned 
to itself

4 blocks 3 blocks
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Matrix Multiplication Example
• If each Block has 16X16 threads and each thread uses 

10 registers, how many thread can run on each SM?
– Each Block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are 

concerned
• How about if each thread increases the use of registers 

by 1?
– Each  Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of 

parallelism!!!
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More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to 
compilers/programmers
– One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 
registers each 

• This allows for finer grain threading than traditional CPU threading 
models.

– The compiler can tradeoff between instruction-level 
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

10

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent 
instructions for each global memory load in the thread 
program, and each thread uses 10 registers, global laods have 
200 cycles 
– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the 
dependence pattern so that 8 independent instructions exist for 
each global memory load
– Only two can run on each SM
– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory 

latency
– Two Blocks have 16 Warps. The performance can be actually higher!
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Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads 
in a Warp
– Extremely efficient way of accessing a value that is 

common for all threads in a Block!
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Shared Memory

• Each SM has 16 KB of Shared Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as shared 
storage visible to all threads in a thread 
block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other ☺
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Multiply Using Several Blocks
• One block computes one square 

sub-matrix Psub of size BLOCK_SIZE

• One thread computes one element 
of Psub

• Assume that the dimensions of M 
and N are multiples of BLOCK_SIZE 
and square shape M
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Matrix Multiplication 
Shared Memory Usage

• Each Block requires 2* WIDTH2 * 4 bytes of shared 
memory storage
– For WIDTH = 16, each BLOCK requires 2KB, up to 8 

Blocks can fit into the Shared Memory of an SM
– Since each SM can only take 768 threads, each SM can only 

take 3 Blocks of 256 threads each
– Shared memory size is not a limitation for Matrix 

Multiplication of 
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Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized
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Bank Addressing Examples

• No Bank Conflicts
– Linear addressing 

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation
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Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing 

stride == 2

• 8-way Bank Conflicts
– Linear addressing 

stride == 8
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How addresses map to banks on G80
• Each bank has a bandwidth of 32 bits per clock cycle
• Successive 32-bit words are assigned to successive 

banks
• G80 has 16 banks

– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a 
single half-warp
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Shared memory bank conflicts
• Shared memory is as fast as registers if there are no bank 

conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank 

conflict
– If all threads of a half-warp access the identical address, there is no 

bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the same 

bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank
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Linear Addressing
• Given:

__shared__ float shared[256];
float foo = 
shared[baseIndex + s * 
threadIdx.x];

• This is only bank-conflict-free if s 
shares no common factors with the 
number of banks 
– 16 on G80, so s must be odd
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Data types and bank conflicts
• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];
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Structs and Bank Conflicts
• Struct assignments compile into as many memory accesses as there are 

struct members:

struct vector { float x, y, z; };
struct myType { 

float f; 
int c;

};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType m = myTypes[baseIndex + threadIdx.x];
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Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into 
shared mem:
– 2-way-interleaved loads result in 

2-way bank conflicts:

int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU 
threads, locality in cache line usage and 
reduced sharing traffice.
– Not in shared memory usage where there is 

no cache line effects but banking effects
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Vector Reduction with Bank Conflicts
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A Better Array Access Pattern
• Each thread loads one element in 

every consecutive group of 
bockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] = 
global[tid + blockDim.x];
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No Bank Conflicts
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Common Bank Conflict Patterns (2D)
• Operating on 2D array of floats in 

shared memory
– e.g. image processing

• Example: 16x16 block
– Assume that each thread processes a row
– So threads in a block access all element of a 

column simultaneously (example: row 1 in 
purple)

– All 16 of these elements are mapped into 
the same bank

– 16-way bank conflicts: rows all start at 
bank 0

Bank Indices without Padding

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28

Common Bank Conflict Patterns (2D)
• Solution 1) pad the rows

– Add one float to the end of each row
• Solution 2) transpose before processing

– Suffer bank conflicts during transpose
– But possibly save them later

0 1 2 3 4 5 6 7 15
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 10 2
4 5 6 7 8 9 10 11 3
5 6 7 8 9 10 11 12 4
6 7 8 9 10 11 12 13 5
7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0
1
2
3
4
5
6
8

15

Matrix view:
Bank Indices with Padding

0 1 2 3 4 5 6 7 15
16 0 1 2 3 4 5 6 14
15 16 0 1 2 3 4 5 13
14 15 16 0 1 2 3 4 12
13 14 15 16 0 1 2 3 11
12 13 14 15 16 0 1 2 10
11 12 13 14 15 16 0 1 9
10 11 12 13 14 15 16 0 8

1 2 3 4 5 6 7 8 16

Memory Bank View:
Matrix indices with padding

Row elements
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Now all elements of the same column are in 
different banks.
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Does Matrix Multiplication Incur Shared 
Memory Bank Conflicts?

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

All Warps in a Block 
access the same row of 
Ms – broadcast!

All Warps in a Block 
access neighboring 
elements in a row as they 
access walk through 
neighboring columns!
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Load/Store (Memory read/write) 
Clustering/Batching

• Use LD to hide LD latency (non-dependent LD ops only)
– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)
– Dependent MATH 0
– LD 1 (long latency)
– Dependent MATH 1

• Do:
– LD 0 (long latency)
– LD 1 (long latency - hidden)
– MATH 0
– MATH 1

• Compiler handles this!
– But, you must have enough non-dependent LDs and Math


