
1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lecture 10: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

2

Objective
• To understand the implications of control flow on

– Branch divergence overhead
– SM execution resource utilization

• To learn better ways to write code with control flow
• To understand compiler/HW predication designed to

reduce the impact of control flow
– There is a cost involved.

2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

3

Quick terminology review
• Thread: concurrent code and associated state executed on the

CUDA device (in parallel with other threads)

– The unit of parallelism in CUDA

• Warp: a group of threads executed physically in parallel in
G80

• Block: a group of threads that are executed together and form
the unit of resource assignment

• Grid: a group of thread blocks that must all complete before
the next phase of the program can begin

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

4

How thread blocks are partitioned

• Thread blocks are partitioned into warps
– Thread IDs within a warp are consecutive and increasing
– Warp 0 starts with Thread ID 0

• Partitioning is always the same
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from generation to

generation
– (Covered next)

• However, DO NOT rely on any ordering between warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results

3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

5

Control Flow Instructions
• Main performance concern with branching is divergence

– Threads within a single warp take different paths
– Different execution paths are serialized in G80

• The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

• A common case: avoid divergence when branch condition is a
function of thread ID
– Example with divergence:

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0 and 1 follow different path

than the rest of the threads in the first warp
– Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any

given warp follow the same path

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

6

Parallel Reduction

• Given an array of values, “reduce” them to a single
value in parallel

• Examples
– sum reduction: sum of all values in the array
– Max reduction: maximum of all values in the array

• Typically parallel implementation:
– Recursively halve # threads, add two values per thread
– Takes log(n) steps for n elements, requires n/2 threads

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

7

A Vector Reduction Example

• Assume an in-place reduction using shared memory
– The original vector is in device global memory
– The shared memory used to hold a partial sum vector
– Each iteration brings the partial sum vector closer to the

final sum
– The final solution will be in element 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

8

A simple implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)
{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

9

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

10

Vector Reduction with Branch Divergence

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11

Some Observations

• In each iterations, two control flow paths will be sequentially
traversed for each warp
– Threads that perform addition and threads that do not
– Threads that do not perform addition may cost extra cycles depending

on the implementation of divergence

• No more than half of threads will be executing at any time
– All odd index threads are disabled right from the beginning!
– On average, less than ¼ of the threads will be activated for all warps

over time.
– After the 5th iteration, entire warps in each block will be disabled, poor

resource utilization but no divergence.
• This can go on for a while, up to 4 more iterations (512/32=16= 24), where

each iteration only has one thread activated until all warps retire

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

12

Short comings of the implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)
{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

BAD: Divergence
due to interleaved
branch decisions

BAD: Bank
conflicts due to

stride

7

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

13

A better implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x;

stride > 1; stride >> 1)
{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

14

Thread 0

No Divergence until < 16 sub-sums

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

15

Some Observations About the New
Implementation

• Only the last 5 iterations will have divergence
• Entire warps will be shut down as iterations progress

– For a 512-thread block, 4 iterations to shut down all but one
warps in each block

– Better resource utilization, will likely retire warps and thus
blocks faster

• Recall, no bank conflicts either

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

16

A Potential Further Refinement
but bad idea

• For last 6 loops only one warp active (i.e. tid’s 0..31)
– Shared reads & writes SIMD synchronous within a warp
– So skip __syncthreads() and unroll last 5 iterations

unsigned int tid = threadIdx.x;
for (unsigned int d = n>>1; d > 32; d >>= 1) {

__syncthreads();
if (tid < d)

shared[tid] += shared[tid + d];
}
__syncthreads();
if (tid <= 32) { // unroll last 6 predicated steps

shared[tid] += shared[tid + 32];
shared[tid] += shared[tid + 16];
shared[tid] += shared[tid + 8];
shared[tid] += shared[tid + 4];
shared[tid] += shared[tid + 2];
shared[tid] += shared[tid + 1];

}

This would not work properly
is warp size decreases; need

__synchthreads() between each
statement!

However, having
___synchthreads() in if

statement is problematic.

9

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

17

Predicated Execution Concept

<p1> LDR r1,r2,0

• If p1 is TRUE, instruction executes normally

• If p1 is FALSE, instruction treated as NOP

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

18

Predication Example

:
:
if (x == 10)

c = c + 1;
:
:

:
:
LDR r5, X
p1 <- r5 eq 10

<p1> LDR r1 <- C
<p1> ADD r1, r1, 1
<p1> STR r1 -> C

:
:

10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

19

B

A

C

D

A
B
C
D

Predication very helpful for if-else

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

20

If-else example

:
:
p1,p2 <- r5 eq 10

<p1> inst 1 from B
<p1> inst 2 from B
<p1> :

:
<p2> inst 1 from C
<p2> inst 2 from C

:
:

:
:
p1,p2 <- r5 eq 10

<p1> inst 1 from B
<p2> inst 1 from C

<p1> inst 2 from B
<p2> inst 2 from C

<p1> :
:

schedule

The cost is extra instructions will be issued each time the code is
executed. However, there is no branch divergence.

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

21

Instruction Predication in G80
• Comparison instructions set condition codes (CC)
• Instructions can be predicated to write results only when CC meets

criterion (CC != 0, CC >= 0, etc.)

• Compiler tries to predict if a branch condition is likely to produce many
divergent warps

– If guaranteed not to diverge: only predicates if < 4 instructions
– If not guaranteed: only predicates if < 7 instructions

• May replace branches with instruction predication

• ALL predicated instructions take execution cycles
– Those with false conditions don’t write their output

• Or invoke memory loads and stores
– Saves branch instructions, so can be cheaper than serializing divergent paths

