
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lecture 12: Application Lessons

When the tires hit the road…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

2

Objective

• Putting the CUDA performance knowledge to work
– Plausible strategies may or may not lead to performance

enhancement
– Different constraints dominate in different application

situations
– Case studies help to establish intuition, idioms and ideas

• Algorithm patterns that can result in both better
efficiency as well as better HW utilization

This lecture covers simple case studies on useful
strategies for tuning CUDA application

performance on G80.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

3

Some Performance Lessons from
Matrix Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

4

Multiply Using Several Blocks
• One block computes one square sub-matrix

Psub of size BLOCK_WIDTH

• One thread computes one element of Psub

• Assume that the dimensions of M and N
are multiples of BLOCK_WIDTH and square
shape

M

N

P

Psub

BLOCK_WIDTH

WIDTHWIDTH

BLOCK_WIDTHBLOCK_WIDTH

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L
O
C
K
_W
ID
T
H

B
L
O
C
K
_W
ID
T
H

B
L
O
C
K
_S
IZ
E

W
ID
T
H

W
ID
T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

5

First-order Size Considerations

• Each thread block should have a minimal of 96
(768/8) threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• A minimal of 64 thread blocks
– A 1024*1024 P Matrix at TILE_WIDTH 16 gives 64*64 =

4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads
from device memory for 256 * (2*16) = 8,192
mul/add operations.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

6

Shared Memory Usage

• Each SMP has 16KB shared memory
– Each Thread Block uses 2*256*4B = 2KB of shared

memory.
– Can potentially have up to 8 Thread Blocks actively

executing
– For BLOCK_WIDTH = 16, this allows up to 8*512 = 4,096

pending loads
• In practice, there will probably be up to half of this due to

scheduling to make use of SPs.
– The next BLOCK_WIDTH 32 would lead to 2*32*32*4B=

8KB shared memory usage per Thread Block, allowing only
up to two Thread Blocks active at the same time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

7

Instruction Mix Considerations
for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches
and address calculation.

Loop unrolling can help.

Pvalue += Ms[ty][k] * Ns[k][tx] + …
Ms[ty][k+15] * Ns[k+15][tx];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

8

More Work per Thread: 1xN Tiling
• One block computes N square sub-matrix

Psub of size BLOCK_WIDTH

• One thread computes N element of Psub

• Reduced loads from global memory (M)
to shared memory

• Reduced instruction overhead
– More work done in each iteration

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L
O
C
K
_S
IZ
E

B
L
O
C
K
_S
IZ
E

B
L
O
C
K
_S
IZ
E

M
.h
ei
gh
t

N
.h
ei
gh
t

Psub

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

9

Prefetching
• One could double buffer the computation, getting

better instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared
memory

syncthreads()

Compute current tile

syncthreads()
}

Load next tile from global memory

Loop {
Deposit current tile to shared memory
syncthread()

Load next tile from global memory

Compute current subblock

syncthreads()
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

10

Some More Plausible Ideas

• One might be able to use texture memory for M
accesses to reduce register usage

• Let us know if you get more than 120 GFLOPs
(including CPU/GPU data transfers) for matrix
multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11

Scan – Algorithm Effects on
Parallelism and Memory Conflicts

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

12

Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative
operator ⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example:
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set

[0 3 4 11 11 15 16 22]
(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last
input element is not
included in the result

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

13

Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:
• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms
• Etc.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

14

Scan on the CPU

• Just add each element to the sum of the elements
before it

• Trivial, but sequential
• Exactly n adds: optimal in terms of work efficiency

void scan(float* scanned, float* input, int length)
{

scanned[0] = 0;
for(int i = 1; i < length; ++i)
{
scanned[i] = input[i-1] + scanned[i-1];

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

15

A First-Attempt Parallel Scan Algorithm

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

16

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

• Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T0 and
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 0 3 4 8 7 4 5 7
Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

17

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #2
Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

18

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #3
Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

19

A First-Attempt Parallel Scan Algorithm

Out 0 3 4 11 11 15 16 22

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

3. Write output to device
memory.

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

Code from CUDA SDK (naïve)
__global__ void scan_naive(float *g_odata, float *g_idata, int n)
{

// Dynamically allocated shared memory for scan kernels
extern __shared__ float temp[];
int thid = threadIdx.x;
int pout = 0;
int pin = 1;
// Cache the computational window in shared memory
temp[pout*n + thid] = (thid > 0) ? g_idata[thid-1] : 0;
for (int offset = 1; offset < n; offset *= 2) {

pout = 1 - pout;
pin = 1 - pout;
__syncthreads();
temp[pout*n+thid] = temp[pin*n+thid];
if (thid >= offset)

temp[pout*n+thid] += temp[pin*n+thid - offset];
}
__syncthreads();
g_odata[thid] = temp[pout*n+thid];

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

20

Number of threads = n

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

21

Work Efficiency Considerations

• The first-attempt Scan executes log(n) parallel iterations
– The steps do (n/2 + n/2-1), (n/4+ n/2-1), (n/8+n/2-1),..(1+ n/2-1) adds

each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

• A parallel algorithm can be slow when execution resources are
saturated due to low work efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

22

Improving Efficiency

• A common parallel algorithm pattern:
Balanced Trees

– Build a balanced binary tree on the input data and sweep it to and
from the root

– Tree is not an actual data structure, but a concept to determine what
each thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

23

Build the Sum Tree
T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

24

Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

25

Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

26

Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28

Build Scan From Partial Sums
T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

29

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

30

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Stride 4

Stride 2

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

31

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 threads

Stride 2

Stride 4

Stride 1

Each corresponds
to a single thread.

Code (CUDA SDK work-efficient)
_global__ void scan_workefficient(float *g_odata, float *g_idata, int n){

// Dynamically allocated shared memory for scan kernels
extern __shared__ float temp[];
int thid = threadIdx.x;
int offset = 1;
// Cache the computational window in shared memory
temp[2*thid] = g_idata[2*thid];
temp[2*thid+1] = g_idata[2*thid+1];
// build the sum in place up the tree
for (int d = n>>1; d > 0; d >>= 1) {

__syncthreads();
if (thid < d) {

int ai = offset*(2*thid+1)-1;
int bi = offset*(2*thid+2)-1;
temp[bi] += temp[ai];

}
offset *= 2;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

32

Number of threads = n/2

Code (Cont.)
// scan back down the tree
// clear the last element
if (thid == 0) {

temp[n - 1] = 0;
}
// traverse down the tree building the scan in place
for (int d = 1; d < n; d *= 2) {

offset >>= 1;
__syncthreads();

if (thid < d){
int ai = offset*(2*thid+1)-1;
int bi = offset*(2*thid+2)-1;
float t = temp[ai];
temp[ai] = temp[bi];
temp[bi] += t;

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

33

Code (cont.)

__syncthreads();
// write results to global memory
g_odata[2*thid] = temp[2*thid];
g_odata[2*thid+1] = temp[2*thid+1];

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

34

Problem: Bank conflicit

• Each thread loads two shared mem data elements
• Tempting to interleave the loads

temp[2*thid] = g_idata[2*thid];
temp[2*thid+1] = g_idata[2*thid+1];

• Threads:(0,1,2,…,8,9,10,…) banks:(0,2,4,…,0,2,4,
…)

• Solution: padding
• See the best implementation in CUDA SDK.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

35

