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ECE 498AL

Lecture 12:  Application Lessons

When the tires hit the road…
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Objective

• Putting the CUDA performance knowledge to work 
– Plausible strategies may or may not lead to performance 

enhancement
– Different constraints dominate in different application 

situations
– Case studies help to establish intuition, idioms and ideas

• Algorithm patterns that can result in both better 
efficiency as well as better HW utilization

This lecture covers simple case studies on useful 
strategies for tuning CUDA application 

performance on G80.
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Some Performance Lessons from 
Matrix Multiplication 
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Multiply Using Several Blocks
• One block computes one square sub-matrix 

Psub of size BLOCK_WIDTH

• One thread computes one element of Psub

• Assume that the dimensions of M and N 
are multiples of BLOCK_WIDTH and square 
shape
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First-order Size Considerations

• Each thread block should have a minimal of 96 
(768/8) threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• A minimal of 64 thread blocks
– A 1024*1024 P Matrix at TILE_WIDTH 16 gives 64*64 = 

4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads 
from device memory for 256 * (2*16) = 8,192 
mul/add operations. 
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Shared Memory Usage

• Each SMP has 16KB shared memory
– Each Thread Block uses 2*256*4B = 2KB of shared 

memory. 
– Can potentially have up to 8 Thread Blocks actively 

executing
– For BLOCK_WIDTH = 16, this allows up to 8*512 = 4,096 

pending loads
• In practice, there will probably be up to half of this due to 

scheduling to make use of SPs.
– The next BLOCK_WIDTH 32 would lead to 2*32*32*4B= 

8KB shared memory usage per Thread Block, allowing only 
up to two Thread Blocks active at the same time
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Instruction Mix Considerations
for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches 
and address calculation. 

Loop unrolling can help.

Pvalue += Ms[ty][k] * Ns[k][tx] + …
Ms[ty][k+15] * Ns[k+15][tx];
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More Work per Thread: 1xN Tiling
• One block computes N square sub-matrix 

Psub of size BLOCK_WIDTH

• One thread computes N element of Psub

• Reduced loads from global memory (M) 
to shared memory

• Reduced instruction overhead
– More work done in each iteration
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Prefetching
• One could double buffer the computation, getting 

better instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared 
memory

syncthreads()

Compute current tile

syncthreads()
}

Load next tile from global memory

Loop {
Deposit current tile to shared memory
syncthread()

Load next tile from global memory

Compute current subblock

syncthreads()
}
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Some More Plausible Ideas

• One might be able to use texture memory for M 
accesses to reduce register usage 

• Let us know if you get more than 120 GFLOPs 
(including CPU/GPU data transfers) for matrix 
multiplication
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Scan – Algorithm Effects  on 
Parallelism and Memory Conflicts
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Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative 
operator ⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example: 
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set 

[0 3 4 11 11 15 16 22]
(From Blelloch, 1990, “Prefix 
Sums and Their Applications)

Exclusive scan: last 
input element is not 
included in the result
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Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :  
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:
• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms
• Etc.
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Scan on the CPU

• Just add each element to the sum of the elements 
before it

• Trivial, but sequential
• Exactly n adds: optimal in terms of work efficiency

void scan( float* scanned, float* input, int length) 
{

scanned[0] = 0; 
for(int i = 1; i < length; ++i) 
{
scanned[i] = input[i-1] + scanned[i-1];

}
}
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A First-Attempt Parallel Scan Algorithm

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30
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A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

• Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T0 and 
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 0 3 4 8 7 4 5 7
Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #2
Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #3
Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6
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A First-Attempt Parallel Scan Algorithm

Out 0 3 4 11 11 15 16 22

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

3. Write output to device 
memory. 

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

Code from CUDA SDK (naïve)
__global__ void scan_naive(float *g_odata, float *g_idata, int n)
{

// Dynamically allocated shared memory for scan kernels
extern  __shared__  float temp[];
int thid = threadIdx.x;
int pout = 0;
int pin = 1;
// Cache the computational window in shared memory
temp[pout*n + thid] = (thid > 0) ? g_idata[thid-1] : 0;
for (int offset = 1; offset < n; offset *= 2)    {

pout = 1 - pout;
pin  = 1 - pout;
__syncthreads();
temp[pout*n+thid] = temp[pin*n+thid];
if (thid >= offset)

temp[pout*n+thid] += temp[pin*n+thid - offset];
}
__syncthreads();
g_odata[thid] = temp[pout*n+thid];

}
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Number of threads = n
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Work Efficiency Considerations

• The first-attempt Scan executes log(n) parallel iterations
– The steps do (n/2 + n/2-1), (n/4+ n/2-1), (n/8+n/2-1),..(1+ n/2-1) adds 

each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

• A parallel algorithm can be slow when execution resources are 
saturated due to low work efficiency
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Improving Efficiency

• A common parallel algorithm pattern:
Balanced Trees

– Build a balanced binary tree on the input data and sweep it to and 
from the root

– Tree is not an actual data structure, but a concept to determine what 
each thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal 

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums
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Build the Sum Tree
T 3 1 7 0 4 1 6 3

Assume array is already in shared memory
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Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       corresponds 
to a single thread.
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Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       corresponds 
to a single thread.
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Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each       corresponds 
to a single thread.
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Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums.  Since this is an exclusive scan,
set the last element to zero.  It will propagate back to the first element.
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Build Scan From Partial Sums
T 3 4 7 11 4 5 6 0



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

29

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each       corresponds 
to a single thread.
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2 
2 threads

Stride 4

Stride 2

Each       corresponds 
to a single thread.
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done!  We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  
Total work: 2 * (n-1) adds = O(n)     Work Efficient!

Iteration log(n) 
n/2 threads

Stride 2

Stride 4

Stride 1

Each       corresponds 
to a single thread.

Code (CUDA SDK work-efficient)
_global__ void scan_workefficient(float *g_odata, float *g_idata, int n){

// Dynamically allocated shared memory for scan kernels
extern  __shared__  float temp[];
int thid = threadIdx.x;
int offset = 1;
// Cache the computational window in shared memory
temp[2*thid]   = g_idata[2*thid];
temp[2*thid+1] = g_idata[2*thid+1];
// build the sum in place up the tree
for (int d = n>>1; d > 0; d >>= 1)    {

__syncthreads();
if (thid < d)       {

int ai = offset*(2*thid+1)-1;
int bi = offset*(2*thid+2)-1;
temp[bi] += temp[ai];

}
offset *= 2;

}
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Number of threads = n/2



Code (Cont.)
// scan back down the tree
// clear the last element
if (thid == 0)    {

temp[n - 1] = 0;
}   
// traverse down the tree building the scan in place
for (int d = 1; d < n; d *= 2)    {

offset >>= 1;
__syncthreads();

if (thid < d){
int ai = offset*(2*thid+1)-1;
int bi = offset*(2*thid+2)-1;
float t   = temp[ai];
temp[ai]  = temp[bi];
temp[bi] += t;

}
}
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Code (cont.)

__syncthreads();
// write results to global memory
g_odata[2*thid]   = temp[2*thid];
g_odata[2*thid+1] = temp[2*thid+1];

}
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Problem: Bank conflicit

• Each thread loads two shared mem data elements
• Tempting to interleave the loads

temp[2*thid] = g_idata[2*thid];
temp[2*thid+1] = g_idata[2*thid+1];

• Threads:(0,1,2,…,8,9,10,…) banks:(0,2,4,…,0,2,4,
…)

• Solution: padding
• See the best implementation in CUDA SDK.
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