Programming for Cell Processors

Huiyang Zhou

Review of Cell Processor Architecture

• Heterogeneous Chip Multiprocessors (CMP)
Future High Performance CMPs: A shared view of comp. arch. community

- Heterogeneous cores on a single chip
- \(M \) large complex OOO cores and \(N \) small in-order cores (\(N \gg M \))
 - Large OOO cores for control-intensive, hard-to-parallelize code (Instruction-level parallelism, Memory-level parallelism, aggressive speculation)
 - Many small in-order processors for data-level parallelism, task/thread-level parallelism
- E.g.

- Cell is heterogeneous but does not really fit the description
 - PPE is far from powerful enough
 - Next generation of Cell may address PPE performance

Flynn's Taxonomy

Figure from wikipedia

University of Central Florida
MIMD Architectures

• Further Division of MIMD
 – Single Program, Multiple Data Stream (SPMD)
 • Exploit Data-Level Parallelism
 • Difference between SIMD: no lockstep
 • In GPU, SIMD in a warp/cluster; SPMD among multiple warps/clusters
 – Multiple Program, Multiple Data Stream (MPMD)
 • Exploit Function/Task-Level Parallelism
 • E.g., Master/worker
• Cell processors
 – Supports MPMD
 – In each SPU, SIMD execution exploits data-level parallelism
 – Multiple SPUs can execute different codes.

Workload Partition

• PPE-centric vs. SPE-centric
Multistage Pipeline Model

- Main issues:
 - Load balance
 - Data transmission

Parallel Stage Model

- SPMD – Similar to CUDA or Brooks+ model
Service Model

• MPMD

Outline

• Introduction of programming models
 • “Hello world”
 - Three versions
 • Run-time support
 • Programming using vectors: SIMDization
 • DMA
 • Program Optimization