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Class Objectives

Learn how to use the static spu timing tool and analysis

Trademarks - Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony 
Computer Entertainment, Inc.
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Class Agenda

What is the SPU timing tool?
– Features
– Syntax

Sample output
– Interpreting the output

Useful Techniques
– Profile markers for locating code sections of interest

Functional Limitations

References: 
– Dan Brokenshire, Quasar Design Center
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What is the SPU timing tool

Annotates an assembly source file with static analysis of 
instruction timing assuming linear (branchless) execution.
– Simplified pipeline model

– Does not account for:
• instruction fetch stalls
• local store contention
• branching

– Supports Cell SDK 2.0 SPU models

Annotated

assembly source

(example.s.timing)

C source code

(example.c)

Assembly source

(example.s)

spu-gcc –S example.c
or

spuxlc –S example.c

spu_timing example.s
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Invocation Syntax

spu_timing [options …] [input_file]

options:

--help displays a verbose help screen.

-march=<cpu> specifies the target architecture. <cpu> is either cell or 
cell_edp

-o <file> specifies the output file. Default is 
<input_file>.timing or

stdout if no input file is specified.

-running-count include column of running cycles counts for start of each
instruction.

<input_file> specifies the assembly input file. If not specified, spu_timing
sources its input from stdin.
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Sample  - C source (example.c)

#include <spu_intrinsics.h>

// Compute y = alpha * x + y, where alpha is a scalar and x 
and 
// y are 4*n element vectors.

void saxpy(int n, float alpha, vec_float4 x[], vec_float4 y[])
{
int i;
vec_float4 a;

a = spu_splats(alpha);

for (i=0; i<n; i++) {
y[i] = spu_madd(a, x[i], y[i]);

}
}
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Sample - assembly source (example.s) 

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

ila $2,66051
shlqbyi $7,$3,0
cgti $3,$3,0
shufb $8,$4,$4,$2
nop $127
biz $3,$lr
ori $4,$7,0
hbra .L8,.L4
il $7,0
lnop

.L4:
ai $4,$4,-1
lqx $2,$7,$5
lqx $3,$7,$6
fma $2,$8,$2,$3
stqx $2,$7,$6
ai $7,$7,16

.L8:
brnz $4,.L4
bi $lr
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Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01                                                    ila $2,66051
000000 1D 0123                                                  shlqbyi $7,$3,0
000001 0d  12                                                   cgti $3,$3,0
000002 1d  -2345                                                     shufb $8,$4,$4,$2
000003 0D    3                                                  nop $127
000003 1D    3456                                               biz $3,$lr
000004 0D     45                                                ori $4,$7,0
000004 1D     456789                                            hbra .L8,.L4
000005 0D      56                                               il $7,0
000005 1D      5                                                lnop

.L4:
000006 0d       67                                              ai $4,$4,-1
000007 1d       -789012                                              lqx $2,$7,$5
000008 1          890123                                        lqx $3,$7,$6
000014 0           -----456789                                       fma $2,$8,$2,$3
000020 1                 -----012345                                 stqx $2,$7,$6

.L8:
000022 1                        2345                            brnz $4,.L4
000023 1                         3456                           bi $lr
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Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01                                                    ila $2,66051
000000 1D 0123                                                  shlqbyi $7,$3,0
000001 0d  12                                                   cgti $3,$3,0
000002 1d  -2345                                                     shufb $8,$4,$4,$2
000003 0D    3                                                  nop $127
000003 1D    3456                                               biz $3,$lr
000004 0D     45                                                ori $4,$7,0
000004 1D     456789                                            hbra .L8,.L4
000005 0D      56                                               il $7,0
000005 1D      5                                                lnop

.L4:
000006 0d       67                                              ai $4,$4,-1
000007 1d       -789012                                              lqx $2,$7,$5
000008 1          890123                                        lqx $3,$7,$6
000014 0           -----456789                                       fma $2,$8,$2,$3
000020 1                 -----012345                                 stqx $2,$7,$6

.L8:
000022 1                        2345                            brnz $4,.L4
000023 1                         3456                           bi $lr

running-count – cycle count 
for which each instruction 
starts. Useful for determining 
the cycles in a loop. For 
example, our loop is 17 cycles 
(23-6).



IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200810

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01                                                    ila $2,66051
000000 1D 0123                                                  shlqbyi $7,$3,0
000001 0d  12                                                   cgti $3,$3,0
000002 1d  -2345                                                     shufb $8,$4,$4,$2
000003 0D    3                                                  nop $127
000003 1D    3456                                               biz $3,$lr
000004 0D     45                                                ori $4,$7,0
000004 1D     456789                                            hbra .L8,.L4
000005 0D      56                                               il $7,0
000005 1D      5                                                lnop

.L4:
000006 0d       67                                              ai $4,$4,-1
000007 1d       -789012                                              lqx $2,$7,$5
000008 1          890123                                        lqx $3,$7,$6
000014 0           -----456789                                       fma $2,$8,$2,$3
000020 1                 -----012345                                 stqx $2,$7,$6

.L8:
000022 1                        2345                            brnz $4,.L4
000023 1                         3456                           bi $lr

Execution pipeline – the 
pipeline in which the instruction 
is issued. Either 0 (even 
pipeline) or 1 (odd pipeline).
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Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01                                                    ila $2,66051
000000 1D 0123                                                  shlqbyi $7,$3,0
000001 0d  12                                                   cgti $3,$3,0
000002 1d  -2345                                                     shufb $8,$4,$4,$2
000003 0D    3                                                  nop $127
000003 1D    3456                                               biz $3,$lr
000004 0D     45                                                ori $4,$7,0
000004 1D     456789                                            hbra .L8,.L4
000005 0D      56                                               il $7,0
000005 1D      5                                                lnop

.L4:
000006 0d       67                                              ai $4,$4,-1
000007 1d       -789012                                              lqx $2,$7,$5
000008 1          890123                                        lqx $3,$7,$6
000014 0           -----456789                                       fma $2,$8,$2,$3
000020 1                 -----012345                                 stqx $2,$7,$6

.L8:
000022 1                        2345                            brnz $4,.L4
000023 1                         3456                           bi $lr

dual-issue status – blank 
indicates single issue.

D – indicates the pair of 
instructions will be dual-issued.

d – indicates that for the pair of 
instructions, dual-issue is 
possible but will not occur due 
to a dependency stall.
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Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01                                                    ila $2,66051
000000 1D 0123                                                  shlqbyi $7,$3,0
000001 0d  12                                                   cgti $3,$3,0
000002 1d  -2345                                                     shufb $8,$4,$4,$2
000003 0D    3                                                  nop $127
000003 1D    3456                                               biz $3,$lr
000004 0D     45                                                ori $4,$7,0
000004 1D     456789                                            hbra .L8,.L4
000005 0D      56                                               il $7,0
000005 1D      5                                                lnop

.L4:
000006 0d       67                                              ai $4,$4,-1
000007 1d       -789012                                              lqx $2,$7,$5
000008 1          890123                                        lqx $3,$7,$6
000014 0           -----456789                                       fma $2,$8,$2,$3
000020 1                 -----012345                                 stqx $2,$7,$6

.L8:
000022 1                        2345                            brnz $4,.L4
000023 1                         3456                           bi $lr

Instruction clock cycle 
occupancy – A digit (0-9) is 
displayed for every clock cycle 
the instruction executes. 
Operand dependency stalls are 
flagged by a dash (“-”) for 
every clock cycle the 
instruction is expect to stall.

Steeply sloping cascading 
numbers signify good 
scheduling. 

Shallow sloping (horizontal) 
numbers signify poor 
scheduling.
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Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01                                                    ila $2,66051
000000 1D 0123                                                  shlqbyi $7,$3,0
000001 0d  12                                                   cgti $3,$3,0
000002 1d  -2345                                                     shufb $8,$4,$4,$2
000003 0D    3                                                  nop $127
000003 1D    3456                                               biz $3,$lr
000004 0D     45                                                ori $4,$7,0
000004 1D     456789                                            hbra .L8,.L4
000005 0D      56                                               il $7,0
000005 1D      5                                                lnop

.L4:
000006 0d       67                                              ai $4,$4,-1
000007 1d       -789012                                              lqx $2,$7,$5
000008 1          890123                                        lqx $3,$7,$6
000014 0           -----456789                                       fma $2,$8,$2,$3
000020 1                 -----012345                                 stqx $2,$7,$6

.L8:
000022 1                        2345                            brnz $4,.L4
000023 1                         3456                           bi $lr

Inner Loop – contains lots of dependency stalls. 

The load of y stalls 1 cycle for address increment. The 
fma stalls 5 cycles waiting for the load to complete. The 
store of the resulting y stalls 5 cycles waiting for the fma
to complete.

Dependency stalls could be eliminated by unrolling the 
loop. Loop unrolling could also result in moderate dual 
issue because the instruction mix is 1/3 pipe 0 and 2/3 
pipe 1.
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Useful Technique – profile markers

For complex source code, insert profile checkpoint markers to locate specific 
code sections. 
– #include <profile.h>
– place prof_cp#() function in desired locations. 
– use unique # for improved identification.
– prof_cp# results in “and $#, $#, $#” instructions, where # is 0 – 31.
– When using spuxlc, the profile checkpoints are coded as mc_funcs. Therefore, to 

locate them, search for a “.word 0x########”, where ######## corresponds to the 
encode and instruction. 



IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200815

Useful Technique – profile markers

#include <spu_intrinsics.h>
#include <profile.h>

// Compute y = alpha * x + y, where 
alpha is a 
// scalar and x and y are 4*n element 
vectors.

void saxpy(int n, float alpha, 
vec_float4 x[], vec_float4 y[])
{

int i;
vec_float4 a;

a = spu_splats(alpha);

prof_cp1();
for (i=0; i<n; i++) {
y[i] = spu_madd(a, x[i], y[i]);

}
prof_cp2();

}

.align 3

.global saxpy

.type saxpy, @function
saxpy:

ila $2,66051
shlqbyi $7,$3,0
and $1,$1,$1; lnop
cgti $3,$3,0
shufb $8,$4,$4,$2
nop $127
biz $3,$lr
ori $4,$7,0
hbra .L8,.L4
il $7,0
lnop

.L4:
ai $4,$4,-1
lqx $2,$7,$5
lqx $3,$7,$6
fma $2,$8,$2,$3
stqx $2,$7,$6
ai $7,$7,16

.L8:
brnz $4,.L4
and $2,$2,$2; lnop
bi $lr
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Functional Limitations

Does not support multiple assembly instructions per line.
Does not support generalized expressions. An expression 
will terminate the assembly parser.
Does not support symbols and symbol substitution.  Can 
terminate the assembly parser.
Does not support completely the .repeat assembler directive.

Works OK with compiled assembly, but often doesn’t 
work for hand written assembly.
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