
IBM Systems & Technology Group
Cell/Quasar Ecosystem & Solutions Enablement

Cell Programming Workshop 3/2/2008 © 2007 IBM Corporation1

SPU Timing Tool – static timing analysis

Cell Programming Workshop
Cell/Quasar Ecosystem & Solutions Enablement

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20082

Class Objectives

Learn how to use the static spu timing tool and analysis

Trademarks - Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony
Computer Entertainment, Inc.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20083

Class Agenda

What is the SPU timing tool?
– Features
– Syntax

Sample output
– Interpreting the output

Useful Techniques
– Profile markers for locating code sections of interest

Functional Limitations

References:
– Dan Brokenshire, Quasar Design Center

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20084

What is the SPU timing tool

Annotates an assembly source file with static analysis of
instruction timing assuming linear (branchless) execution.
– Simplified pipeline model

– Does not account for:
• instruction fetch stalls
• local store contention
• branching

– Supports Cell SDK 2.0 SPU models

Annotated

assembly source

(example.s.timing)

C source code

(example.c)

Assembly source

(example.s)

spu-gcc –S example.c
or

spuxlc –S example.c

spu_timing example.s

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20085

Invocation Syntax

spu_timing [options …] [input_file]

options:

--help displays a verbose help screen.

-march=<cpu> specifies the target architecture. <cpu> is either cell or
cell_edp

-o <file> specifies the output file. Default is
<input_file>.timing or

stdout if no input file is specified.

-running-count include column of running cycles counts for start of each
instruction.

<input_file> specifies the assembly input file. If not specified, spu_timing
sources its input from stdin.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20086

Sample - C source (example.c)

#include <spu_intrinsics.h>

// Compute y = alpha * x + y, where alpha is a scalar and x
and
// y are 4*n element vectors.

void saxpy(int n, float alpha, vec_float4 x[], vec_float4 y[])
{
int i;
vec_float4 a;

a = spu_splats(alpha);

for (i=0; i<n; i++) {
y[i] = spu_madd(a, x[i], y[i]);

}
}

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20087

Sample - assembly source (example.s)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

ila $2,66051
shlqbyi $7,$3,0
cgti $3,$3,0
shufb $8,$4,$4,$2
nop $127
biz $3,$lr
ori $4,$7,0
hbra .L8,.L4
il $7,0
lnop

.L4:
ai $4,$4,-1
lqx $2,$7,$5
lqx $3,$7,$6
fma $2,$8,$2,$3
stqx $2,$7,$6
ai $7,$7,16

.L8:
brnz $4,.L4
bi $lr

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20088

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01 ila $2,66051
000000 1D 0123 shlqbyi $7,$3,0
000001 0d 12 cgti $3,$3,0
000002 1d -2345 shufb $8,$4,$4,$2
000003 0D 3 nop $127
000003 1D 3456 biz $3,$lr
000004 0D 45 ori $4,$7,0
000004 1D 456789 hbra .L8,.L4
000005 0D 56 il $7,0
000005 1D 5 lnop

.L4:
000006 0d 67 ai $4,$4,-1
000007 1d -789012 lqx $2,$7,$5
000008 1 890123 lqx $3,$7,$6
000014 0 -----456789 fma $2,$8,$2,$3
000020 1 -----012345 stqx $2,$7,$6

.L8:
000022 1 2345 brnz $4,.L4
000023 1 3456 bi $lr

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20089

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01 ila $2,66051
000000 1D 0123 shlqbyi $7,$3,0
000001 0d 12 cgti $3,$3,0
000002 1d -2345 shufb $8,$4,$4,$2
000003 0D 3 nop $127
000003 1D 3456 biz $3,$lr
000004 0D 45 ori $4,$7,0
000004 1D 456789 hbra .L8,.L4
000005 0D 56 il $7,0
000005 1D 5 lnop

.L4:
000006 0d 67 ai $4,$4,-1
000007 1d -789012 lqx $2,$7,$5
000008 1 890123 lqx $3,$7,$6
000014 0 -----456789 fma $2,$8,$2,$3
000020 1 -----012345 stqx $2,$7,$6

.L8:
000022 1 2345 brnz $4,.L4
000023 1 3456 bi $lr

running-count – cycle count
for which each instruction
starts. Useful for determining
the cycles in a loop. For
example, our loop is 17 cycles
(23-6).

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200810

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01 ila $2,66051
000000 1D 0123 shlqbyi $7,$3,0
000001 0d 12 cgti $3,$3,0
000002 1d -2345 shufb $8,$4,$4,$2
000003 0D 3 nop $127
000003 1D 3456 biz $3,$lr
000004 0D 45 ori $4,$7,0
000004 1D 456789 hbra .L8,.L4
000005 0D 56 il $7,0
000005 1D 5 lnop

.L4:
000006 0d 67 ai $4,$4,-1
000007 1d -789012 lqx $2,$7,$5
000008 1 890123 lqx $3,$7,$6
000014 0 -----456789 fma $2,$8,$2,$3
000020 1 -----012345 stqx $2,$7,$6

.L8:
000022 1 2345 brnz $4,.L4
000023 1 3456 bi $lr

Execution pipeline – the
pipeline in which the instruction
is issued. Either 0 (even
pipeline) or 1 (odd pipeline).

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200811

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01 ila $2,66051
000000 1D 0123 shlqbyi $7,$3,0
000001 0d 12 cgti $3,$3,0
000002 1d -2345 shufb $8,$4,$4,$2
000003 0D 3 nop $127
000003 1D 3456 biz $3,$lr
000004 0D 45 ori $4,$7,0
000004 1D 456789 hbra .L8,.L4
000005 0D 56 il $7,0
000005 1D 5 lnop

.L4:
000006 0d 67 ai $4,$4,-1
000007 1d -789012 lqx $2,$7,$5
000008 1 890123 lqx $3,$7,$6
000014 0 -----456789 fma $2,$8,$2,$3
000020 1 -----012345 stqx $2,$7,$6

.L8:
000022 1 2345 brnz $4,.L4
000023 1 3456 bi $lr

dual-issue status – blank
indicates single issue.

D – indicates the pair of
instructions will be dual-issued.

d – indicates that for the pair of
instructions, dual-issue is
possible but will not occur due
to a dependency stall.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200812

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01 ila $2,66051
000000 1D 0123 shlqbyi $7,$3,0
000001 0d 12 cgti $3,$3,0
000002 1d -2345 shufb $8,$4,$4,$2
000003 0D 3 nop $127
000003 1D 3456 biz $3,$lr
000004 0D 45 ori $4,$7,0
000004 1D 456789 hbra .L8,.L4
000005 0D 56 il $7,0
000005 1D 5 lnop

.L4:
000006 0d 67 ai $4,$4,-1
000007 1d -789012 lqx $2,$7,$5
000008 1 890123 lqx $3,$7,$6
000014 0 -----456789 fma $2,$8,$2,$3
000020 1 -----012345 stqx $2,$7,$6

.L8:
000022 1 2345 brnz $4,.L4
000023 1 3456 bi $lr

Instruction clock cycle
occupancy – A digit (0-9) is
displayed for every clock cycle
the instruction executes.
Operand dependency stalls are
flagged by a dash (“-”) for
every clock cycle the
instruction is expect to stall.

Steeply sloping cascading
numbers signify good
scheduling.

Shallow sloping (horizontal)
numbers signify poor
scheduling.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200813

Sample – annotated source (example.s.timing)

.file "example.c“
.text

.align 3

.global saxpy

.type saxpy, @function
saxpy:

000000 0D 01 ila $2,66051
000000 1D 0123 shlqbyi $7,$3,0
000001 0d 12 cgti $3,$3,0
000002 1d -2345 shufb $8,$4,$4,$2
000003 0D 3 nop $127
000003 1D 3456 biz $3,$lr
000004 0D 45 ori $4,$7,0
000004 1D 456789 hbra .L8,.L4
000005 0D 56 il $7,0
000005 1D 5 lnop

.L4:
000006 0d 67 ai $4,$4,-1
000007 1d -789012 lqx $2,$7,$5
000008 1 890123 lqx $3,$7,$6
000014 0 -----456789 fma $2,$8,$2,$3
000020 1 -----012345 stqx $2,$7,$6

.L8:
000022 1 2345 brnz $4,.L4
000023 1 3456 bi $lr

Inner Loop – contains lots of dependency stalls.

The load of y stalls 1 cycle for address increment. The
fma stalls 5 cycles waiting for the load to complete. The
store of the resulting y stalls 5 cycles waiting for the fma
to complete.

Dependency stalls could be eliminated by unrolling the
loop. Loop unrolling could also result in moderate dual
issue because the instruction mix is 1/3 pipe 0 and 2/3
pipe 1.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200814

Useful Technique – profile markers

For complex source code, insert profile checkpoint markers to locate specific
code sections.
– #include <profile.h>
– place prof_cp#() function in desired locations.
– use unique # for improved identification.
– prof_cp# results in “and $#, $#, $#” instructions, where # is 0 – 31.
– When using spuxlc, the profile checkpoints are coded as mc_funcs. Therefore, to

locate them, search for a “.word 0x########”, where ######## corresponds to the
encode and instruction.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200815

Useful Technique – profile markers

#include <spu_intrinsics.h>
#include <profile.h>

// Compute y = alpha * x + y, where
alpha is a
// scalar and x and y are 4*n element
vectors.

void saxpy(int n, float alpha,
vec_float4 x[], vec_float4 y[])
{

int i;
vec_float4 a;

a = spu_splats(alpha);

prof_cp1();
for (i=0; i<n; i++) {
y[i] = spu_madd(a, x[i], y[i]);

}
prof_cp2();

}

.align 3

.global saxpy

.type saxpy, @function
saxpy:

ila $2,66051
shlqbyi $7,$3,0
and $1,$1,$1; lnop
cgti $3,$3,0
shufb $8,$4,$4,$2
nop $127
biz $3,$lr
ori $4,$7,0
hbra .L8,.L4
il $7,0
lnop

.L4:
ai $4,$4,-1
lqx $2,$7,$5
lqx $3,$7,$6
fma $2,$8,$2,$3
stqx $2,$7,$6
ai $7,$7,16

.L8:
brnz $4,.L4
and $2,$2,$2; lnop
bi $lr

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200816

Functional Limitations

Does not support multiple assembly instructions per line.
Does not support generalized expressions. An expression
will terminate the assembly parser.
Does not support symbols and symbol substitution. Can
terminate the assembly parser.
Does not support completely the .repeat assembler directive.

Works OK with compiled assembly, but often doesn’t
work for hand written assembly.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200817

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in
other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.
Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.
IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY
10504-1785 USA.
All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.
The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.
All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations
and conditions.
IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.
IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
Many of the features described in this document are operating system dependent and may not be available on Linux. For more information,
please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html
Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this
document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised January 19, 2006

Special Notices -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200818

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks, BladeCenter,
Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business Partner (logo),
IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries; Advanced Micro-
Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power
Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWER6, POWER6+, Redbooks, System p, System p5, System Storage, VideoCharger,
Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries,
or both.
Rambus is a registered trademark of Rambus, Inc.
XDR and FlexIO are trademarks of Rambus, Inc.
UNIX is a registered trademark in the United States, other countries or both.
Linux is a trademark of Linus Torvalds in the United States, other countries or both.
Fedora is a trademark of Redhat, Inc.
Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.
Intel, Intel Xeon, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.
AMD Opteron is a trademark of Advanced Micro Devices, Inc.
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.
TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).
SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and
SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).
AltiVec is a trademark of Freescale Semiconductor, Inc.
PCI-X and PCI Express are registered trademarks of PCI SIG.
InfiniBand™ is a trademark the InfiniBand® Trade Association
Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

Special Notices (Cont.) -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200819

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

Special Notices - Copyrights

