
IBM Systems & Technology Group
Cell/Quasar Ecosystem & Solutions Enablement

Cell Programming Workshop 3/2/2008 © 2007 IBM Corporation1

Developing Code for Cell – DMA & Mailboxes

Cell Programming Workshop
Cell/Quasar Ecosystem Solutions Enablement

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20082

Class Objectives – Things you will learn

How MFC commands are used to access main storage and maintain
synchronization with other processors and devices in the system

DMA transfer and how to initiate a DMA transfer from an SPE

Double buffering and multi-buffering DMA transfers

Mailboxes for communications messaging

Trademarks - Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony
Computer Entertainment, Inc.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20083

Class Agenda
MFC Commands
DMA Commands
DMA-Command Tag Groups
DMA Transfers
DMA To/From Another SPE
DMA Command Status
DMA Transfers Example
Mailboxes
Reading and Writing Mailboxes
SPU Write Outbound Mailboxes
SPU Read Inbound Mailbox
PPE Mailbox Queue – PPE Calls, SPU Calls
SPU Mailbox Queue – PPE Calls, SPU Calls

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20084

Cell’s Primary Communication Mechanisms

DMA transfers, mailbox messages,
and signal-notification

All three are implemented and
controlled by the SPE’s MFC

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20085

MFC Commands

Main mechanism for SPUs to
– access main storage (DMA commands)
– maintain synchronization with other processors and devices in the system

(Synchronization commands)

Can be issued either SPU via its MFC by PPE or other device, as follows:
– Code running on the SPU issues an MFC command by executing a series of

writes and/or reads using channel instructions - read channel (rdch), write
channel (wrch), and read channel count (rchcnt).

– Code running on the PPE or other devices issues an MFC command by
performing a series of stores and/or loads to memory-mapped I/O (MMIO)
registers in the MFC

MFC commands are queued in one of two independent MFC command queues:
– MFC SPU Command Queue — For channel-initiated commands by the

associated SPU
– MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or

other device

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20086

Sequences for Issuing MFC Commands

All operations on a given channel are
unidirectional (they can be only read or
write operations for a given channel,
not bidirectional)

Accesses to channel-interface
resources through MMIO addresses do
not stall

Channel operations are done in
program order

Channel read operations to reserved
channels return ‘0’s

Channel write operations to reserved
channels have no effect

Reading of channel counts on
reserved channels returns ‘0’

Channel instructions use the 32-bit
preferred slot in a 128-bit transfer

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20087

DMA Overview

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20088

DMA Commands

MFC commands that transfer data are referred to as DMA
commands

Transfer direction for DMA commands referenced from the SPE

Into an SPE (from main storage to local store) get

Out of an SPE (from local store to main storage) put

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20089

DMA Commands

Channel Control
Intrinsics

spu_writech

Composite
Intrinsics

spu_mfcdma32

MFC Commands
mfc_get

defined as macros in
spu_mfcio.h

For details see: SPU C/C++ Language Extensions

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200810

DMA Get and Put Command (SPU)

DMA get from main memory into local store
(void) mfc_get(volatile void *ls, uint64_t ea, uint32_t size,

uint32_t tag, uint32_t tid, uint32_t rid)

DMA put into main memory from local store
(void) mfc_put(volatile void *ls, uint64_t ea, uint32_t size,

uint32_t tag, uint32_t tid, uint32_t rid)

To ensure order of DMA request execution:

– mfc_putf : fenced (all commands executed before within the same tag group
must finish first, later ones could be before)

– mfc_putb : barrier (the barrier command and all commands issued thereafter
are not executed until all previously issued commands in the same tag group
have been performed)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200811

DMA-Command Tag Groups

5-bit DMA Tag for all DMA commands (except getllar, putllc, and putlluc)

Tag can be used to
– determine status for entire group or command
– check or wait on the completion of all queued commands in one or more tag groups

Tagging is optional but can be useful when using barriers to control the ordering
of MFC commands within a single command queue.

Synchronization of DMA commands within a tag group: fence and barrier
– Execution of a fenced command option is delayed until all previously issued

commands within the same tag group have been performed.
– Execution of a barrier command option and all subsequent commands is delayed

until all previously issued commands in the same tag group have been performed.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200812

Barriers and Fences

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200813

DMA Characteristics
DMA transfers
– transfer sizes can be 1, 2, 4, 8, and n*16 bytes (n integer)

– maximum is 16KB per DMA transfer

– 128B alignment is preferable

DMA command queues per SPU
– 16-element queue for SPU-initiated requests

– 8-element queue for PPE-initiated requests

SPU-initiated DMA is always preferable

DMA tags
– each DMA command is tagged with a 5-bit identifier

– same identifier can be used for multiple commands

– tags used for polling status or waiting on completion of DMA commands

DMA lists
– a single DMA command can cause execution of a list of transfer requests (in LS)

– lists implement scatter-gather functions

– a list can contain up to 2K transfer requests

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200814

PPE – SPE DMA Transfer

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200815

Transfer from PPE (Main Memory) to SPE

DMA get from main memory
mfc_get(lsaddr,ea,size,tag_id,tid,rid);

– lsaddr = target address in SPU local store for fetched data (SPU local address)

– ea = effective address from which data is fetched (global address)

– size = transfer size in bytes

– tag_id = tag-group identifier

– tid = transfer-class id

– rid = replacement-class id

Also available via “composite intrinsic”:
spu_mfcdma64(lsaddr, eahi, ealow, size, tag_id, cmd);

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200816

DMA Command Status (SPE)

DMA read and write commands are non-blocking

Tags, tag groups, and tag masks used for:
– checking status of DMA commands

– waiting for completion of DMA commands

Each DMA command has a 5-bit tag
– commands with same tag value form a “tag group”

Tag mask is used to identify tag groups for status checks
– tag mask is a 32-bit word

– each bit in the tag mask corresponds to a specific tag id:

tag_mask = (1 << tag_id)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200817

DMA Tag Status (SPE)

Set tag mask
unsigned int tag_mask;

mfc_write_tag_mask(tag_mask);

– tag mask remains set until changed

Fetch tag status
unsigned int result;

result = mfc_read_tag_status(); /* or mfc_stat_tag_status(); */

– tag status is logically ANDed with current tag mask

– tag status bit of ‘1’ indicates that no DMA requests tagged with the specific tag id
(corresponding to the status bit location) are still either in progress or in the DMA
queue

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200818

Waiting for DMA Completion (SPE)

Wait for any tagged DMA:
mfc_read_tag_status_any():

– wait until any of the specified tagged DMA commands is completed

Wait for all tagged DMA:
mfc_read_tag_status_all():

– wait until all of the specified tagged DMA commands are completed

Specified tagged DMA commands = command specified by current tag mask
setting

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200819

DMA Example: Read into Local Store

inline void dma_mem_to_ls(unsigned int mem_addr,
volatile void *ls_addr,unsigned int size)

{
unsigned int tag = 0;
unsigned int mask = 1;
mfc_get(ls_addr,mem_addr,size,tag,0,0);
mfc_write_tag_mask(mask);
mfc_read_tag_status_all();

}

Set tag mask

Wait for all tag
DMA completed

Read contents
of mem_addr
into ls_addr

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200820

DMA Example: Write to Main Memory

inline void dma_ls_to_mem(unsigned int mem_addr,volatile
void *ls_addr, unsigned int size)
{
unsigned int tag = 0;
unsigned int mask = 1;
mfc_put(ls_addr,mem_addr,size,tag,0,0);
mfc_write_tag_mask(mask);
mfc_read_tag_status_all();

}

Write contents of
mem_addr into

ls_addr

Set tag mask

Wait for all tag
DMA completed

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200821

SPE – SPE DMA Transfer

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200822

SPE – SPE DMA

Address in the other SPE’s local store is represented as a 32-bit effective address
(global address)

SPE issuing the DMA command needs a pointer to the other SPE’s local store as a 32-
bit effective address (global address)

PPE code can obtain effective address of an SPE’s local store:

#include <libspe.h>

speid_t speid;

void *spe_ls_addr;

..

spe_ls_addr = spe_get_ls(speid);

Effective address of an SPE’s local store can then be made available to other SPEs (e.g.
via DMA or mailbox)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200823

Tips to Achieve Peak Bandwidth for DMAs

The performance of a DMA data transfer is best when the source and
destination addresses have the same quadword offsets within a PPE
cache line.

Quadword-offset-aligned data transfers generate full cache-line bus
requests for every unrolling, except possibly the first and last unrolling.

Transfers that start or end in the middle of a cache line transfer a partial
cache line (less than 8 quadwords) in the first or last bus request,
respectively.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200824

Mailboxes Overview

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200825

Uses of Mailboxes

To communicate messages up to 32 bits in length, such as buffer completion flags or
program status
– e.g., When the SPE places computational results in main storage via DMA. After

requesting the DMA transfer, the SPE waits for the DMA transfer to complete and
then writes to an outbound mailbox to notify the PPE that its computation is
complete

Can be used for any short-data transfer purpose, such as sending of storage
addresses, function parameters, command parameters, and state-machine parameters
Can also be used for communication between an SPE and other SPEs, processors, or
devices
– Privileged software needs to allow one SPE to access the mailbox register in

another SPE by mapping the target SPE’s problem-state area into the EA space of
the source SPE. If software does not allow this, then only atomic operations and
signal notifications are available for SPE-to-SPE communication.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200826

Mailboxes - Characteristics

Each MFC provides three mailbox queues of 32 bit each:

1. PPE (“SPU write outbound”) mailbox queue
– SPE writes, PPE reads

– 1 deep

– SPE stalls writing to full mailbox

2. PPE (“SPU write outbound”) interrupt mailbox queue
– like PPE mailbox queue, but an interrupt is posted to the PPE when the

mailbox is written

3. SPU (“SPU read inbound”) mailbox queue
– PPE writes, SPE reads

– 4 deep

– can be overwritten

Each mailbox entry is a fullword

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200827

SPE (outgoing)
– write the 32-bit message value to either its two outbound mailbox channels
SPE (incoming)
– reads a message in the inbound mailbox
PPE and other devices (incoming)
– read message in outbound mailbox by reading the MMIO register in the SPE’s MFC
PPE and other devices (outgoing)
– send by writing the associated MMIO register
For interrupts associated with the SPU Write Outbound Interrupt Mailbox,
– no ordering of the interrupt and previously issued MFC commands

Channels

MMIO Registers

PPE SPU
MFC
Register

MMIO Registers
Channel
Interface

SPE

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200828

Mailboxes API – libspe1.x

MFC

PPE mbox

out_mbox

dataflow

spu_stat_out_mbox

spu_write_out_mbox
spe_stat_out_mbox(speid)

spe_read_out_mbox(speid)

PPE intr mbox

out_intr_mbox

spu_stat_out_intr_mbox

spu_write_out_intr_mbox
spe_stat_out_intr_mbox(speid)

spe_get_event

dataflow

SPE mbox

in_mbox

spu_stat_in_mbox

spu_read_in_mbox
spe_stat_in_mbox(speid)

spe_write_in_mbox(speid)

dataflow

PPU (libspe.h) SPU (spu_mfcio.h)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200829

Mailboxes API – libspe2 (See more from libspe2 documents)

MFC

PPE mbox

out_mbox

dataflow

spu_stat_out_mbox

spu_write_out_mbox
spe_out_mbox_status(<speid>)

spe_out_mbox_read(<speid>, &<data>))

PPE intr mbox

out_intr_mbox

spu_stat_out_intr_mbox

spu_write_out_intr_mbox
spe_out_intr_mbox_status(<speid>)

spe_get_event

dataflow

SPE mbox

in_mbox

spu_stat_in_mbox

spu_read_in_mbox

spe_in_mbox_status(<speid>)

spe_in_mbox_write(<speid>,<data>)

dataflow

PPU (libspe2.h) SPU (spu_mfcio.h)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200830

SPU Write Outbound Mailboxes

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200831

SPU Write Outbound Mailbox

– The value written to the SPU Write Outbound Mailbox channel SPU_WrOutMbox is
entered into the outbound mailbox in the MFC if the mailbox has capacity to accept
the value.

– If the mailbox can accept the value, the channel count for SPU_WrOutMbox is
decremented by ‘1’.

– If the outbound mailbox is full, the channel count will read as ‘0’.

– If SPE software writes a value to SPU_WrOutMbox when the channel count is ‘0’, the
SPU will stall on the write.

– The SPU remains stalled until the PPE or other device reads a message from the
outbound mailbox by reading the MMIO address of the mailbox.

– When the mailbox is read through the MMIO address, the channel count is
incremented by ‘1’.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200832

SPU Write Outbound Interrupt Mailbox

– The value written to the SPU Write Outbound Interrupt Mailbox channel
(SPU_WrOutIntrMbox) is entered into the outbound interrupt mailbox if the mailbox
has capacity to accept the value.

– If the mailbox can accept the message, the channel count for SPU_WrOutIntrMbox is
decremented by ‘1’, and an interrupt is raised in the PPE or other device, depending
on interrupt enabling and routing.

– There is no ordering of the interrupt and previously issued MFC commands.
– If the outbound interrupt mailbox is full, the channel count will read as ‘0’.
– If SPE software writes a value to SPU_WrOutIntrMbox when the channel count is ‘0’,

the SPU will stall on the write.
– The SPU remains stalled until the PPE or other device reads a mailbox message

from the outbound interrupt mailbox by reading the MMIO address of the mailbox.
– When this is done, the channel count is incremented by ‘1’.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200833

Waiting to Write SPU Write Outbound Mailbox Data
To avoid SPU stall, SPU can use the read-channel-count instruction on the SPU
Write Outbound Mailbox channel to determine if the queue is empty before writing
to the channel.
If the read-channel-count instruction returns ‘0’, the SPU Write Outbound Mailbox
Queue is full.
If the read channel-count instruction returns a non-zero value, the value indicates
the number of free entries in the SPU Write Outbound Mailbox Queue.
When the queue has free entries, the SPU can write to this channel without stalling
the SPU.

Polling SPU Write Outbound Mailbox or SPU Write Outbound Interrupt Mailbox.

/* To write the value 1 to the SPU Write Outbound Interrupt Mailbox instead

* of the SPU Write Outbound Mailbox, simply replace SPU_WrOutMbox

* with SPU_WrOutIntrMbox in the following example.*/

unsigned int mb_value;

do {

/* Do other useful work while waiting.*/

} while (!spu_readchcnt(SPU_WrOutMbox)); // 0 full, so something useful

spu_writech(SPU_WrOutMbox, mb_value);

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200834

Polling for or Block on an SPU Write Outbound Mailbox Available Event

#define MBOX_AVAILABLE_EVENT 0x00000080
unsigned int event_status;
unsigned int mb_value;
spu_writech(SPU_WrEventMask, MBOX_AVAILABLE_EVENT);
do {

/*
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdEventStat));
event_status = spu_readch(SPU_RdEventStat); /* read status */
spu_writech(SPU_WrEventAck, MBOX_AVAILABLE_EVENT); /* acknowledge event */
spu_writech(SPU_WrOutMbox, mb_value); /* send mailbox message */

NOTES: To block, instead of poll, simply delete the do-loop above.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200835

PPU reads SPU Outbound Mailboxes

PPU must check Mailbox Status Register first

– check that unread data is available in the SPU Outbound Mailbox or SPU
Outbound Interrupt Mailbox

– otherwise, stale or undefined data may be returned

To determine that unread data is available

– PPE reads the Mailbox Status register

– extracts the count value from the SPU_Out_Mbox_Count field

count is

– non-zero at least one unread value is present

– zero PPE should not read but poll the Mailbox Status register

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200836

SPU Read Inbound Mailbox

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200837

SPU Read Inbound Mailbox Channel

Mailbox is FIFO queue
– If the SPU Read Inbound Mailbox channel (SPU_RdInMbox) has a message,

the value read from the mailbox is the oldest message written to the mailbox.

Mailbox Status (empty: channel count =0)
– If the inbound mailbox is empty, the SPU_RdInMbox channel count will read as

‘0’.

SPU stalls on reading empty mailbox
– If SPE software reads from SPU_RdInMbox when the channel count is ‘0’, the

SPU will stall on the read. The SPU remains stalled until the PPE or other
device writes a message to the mailbox by writing to the MMIO address of the
mailbox.

When the mailbox is written through the MMIO address, the channel count is
incremented by ‘1’.

When the mailbox is read by the SPU, the channel count is decremented by '1'.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200838

SPU Read Inbound Mailbox Characteristics

The SPU Read Inbound Mailbox can be overrun by a PPE in which case, mailbox
message data will be lost.

A PPE writing to the SPU Read Inbound Mailbox will not stall when this mailbox is full.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200839

PPE Access to Mailboxes

PPE can derive “addresses” of mailboxes from spe thread id

First, create SPU thread, e.g.:
speid_t spe_id;
spe_id = spe_create_thread(0,spu_load_image,NULL,NULL,-1,0);

– spe_id has type speid_t (normally an int)

PPE mailbox calls use spe_id to identify desired SPE’s mailbox

Functions are in libspe.a

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200840

Read: PPE Mailbox Queue – PPE Calls (libspe.h)

“SPU outbound” mailbox

Check mailbox status:
unsigned int count;
count = spe_stat_out_mbox(spe_id);

– count = 0 no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox

Get mailbox data:
unsigned int data;
data = spe_read_out_inbox(spe_id);

– data contains next 32-bit word from mailbox

– routine is non-blocking

– routine returns MFC_ERROR (0xFFFFFFFF) if no data in mailbox

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200841

Write: PPE Mailbox Queues – SPU Calls (spu_mfcio.h)

“SPU outbound” mailbox

Check mailbox status:
unsigned int count;
count = spu_stat_out_mbox();

– count = 0 mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox

Put mailbox data:
unsigned int data;
spu_write_out_mbox(data);

– data written to mailbox

– routine blocks if mailbox contains unread data

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200842

PPE Interrupting Mailbox Queue – PPE Calls

“SPU outbound” interrupting mailbox

Check mailbox status:
unsigned int count;
count = spe_stat_out_intr_mbox(spe_id);

– count = 0 no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox

Get mailbox data:
– interrupting mailbox is a privileged register

– user PPE applications read mailbox data via spe_get_event

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200843

PPE Interrupting Mailbox Queues – SPU Calls

“SPU outbound” interrupting mailbox

Put mailbox data:
unsigned int data;

spe_write_out_intr_mbox(data);

– data written to interrupting mailbox

– routine blocks if mailbox contains unread data

defined in spu_mfcio.h

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200844

Write: SPU Mailbox Queue – PPE Calls (libspe.h)

“SPU inbound” mailbox

Check mailbox status:
unsigned int count;
count = spe_stat_in_mbox(spe_id);

– count = 0 mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox

Put mailbox data:
unsigned int data, result;
result = spe_write_in_mbox(spe_id,data);

– data written to next 32-bit word in mailbox

– mailbox can overflow

– routine returns 0xFFFFFFFF on failure

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200845

Read: SPU Mailbox Queue – SPU Calls (spu_mfcio.h)

“SPU inbound” mailbox
Check mailbox status:

unsigned int count;
count = spu_stat_in_mbox();

– count = 0 no data in the mailbox
– otherwise, count = number of incoming 32-bit words in the mailbox

Get mailbox data:
unsigned int data;
data = spu_read_in_mbox();

– data contains next 32-bit word from mailbox
– routine blocks if no data in mailbox

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200846

Mailbox Channels and their Associated MMIO Registers

Functions of Mailbox Channels (SPU)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200847

Functions of Mailbox MMIO Registers (PPU)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200848

BACKUP - Reference APIs

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200849

MFC Command Suffixes

Start SPU

Fenced

Barrier

List

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200850

MFC DMA Commands

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200851

MFC DMA Commands (Cont’d)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200852

Synchronization Commands

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200853

MFC Synchronization Commands
MFC synchronization commands

Used to control the order in which DMA storage accesses are performed

Four atomic commands (getllar, putllc, putlluc, and putqlluc),

Three send-signal commands (sndsig, sndsigf, and sndsigb), and

Three barrier commands (barrier, mfcsync, and mfceieio).

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200854

MFC Atomic Commands

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200855

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in
other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.
Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.
IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY
10504-1785 USA.
All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.
The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.
All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations
and conditions.
IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.
IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
Many of the features described in this document are operating system dependent and may not be available on Linux. For more information,
please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html
Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this
document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised January 19, 2006

Special Notices -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200856

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks, BladeCenter,
Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business Partner (logo),
IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries; Advanced Micro-
Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power
Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWER6, POWER6+, Redbooks, System p, System p5, System Storage, VideoCharger,
Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries,
or both.
Rambus is a registered trademark of Rambus, Inc.
XDR and FlexIO are trademarks of Rambus, Inc.
UNIX is a registered trademark in the United States, other countries or both.
Linux is a trademark of Linus Torvalds in the United States, other countries or both.
Fedora is a trademark of Redhat, Inc.
Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.
Intel, Intel Xeon, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.
AMD Opteron is a trademark of Advanced Micro Devices, Inc.
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.
TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).
SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and
SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).
AltiVec is a trademark of Freescale Semiconductor, Inc.
PCI-X and PCI Express are registered trademarks of PCI SIG.
InfiniBand™ is a trademark the InfiniBand® Trade Association
Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

Special Notices (Cont.) -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200857

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

Special Notices - Copyrights

