IBM Systems & Technology Group
Cell/Quasar Ecosystem & Solutions Enablement

) 0 Dde TO : D
ell Proqra 0 0
ell/Quasa 0 s
Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Class Objectives — Things you will learn

= How MFC commands are used to access main storage and maintain
synchronization with other processors and devices in the system

= DMA transfer and how to initiate a DMA transfer from an SPE
= Double buffering and multi-buffering DMA transfers

= Mailboxes for communications messaging

Trademarks - Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony
Computer Entertainment, Inc.

2 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Class Agenda

= MFC Commands

= DMA Commands

= DMA-Command Tag Groups

= DMA Transfers

= DMA To/From Another SPE

= DMA Command Status

= DMA Transfers Example

= Mailboxes

= Reading and Writing Mailboxes

= SPU Write Outbound Mailboxes

= SPU Read Inbound Mailbox

= PPE Mailbox Queue — PPE Calls, SPU Calls
= SPU Mailbox Queue — PPE Calls, SPU Calls

3 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Cell’'s Primary Communication Mechanisms

—> Data Bus

—> Snhoop Bus

—> Control Bus
— Xlate Load/Store
—> MMIO

= DMA transfers, mailbox messages,
and signal-notification

= All three are implemented and
controlled by the SPE’'s MFC

Mechanism Description

Used to move data and instructions between main storage and an LS. SPEs rely on
DMA transfers asynchronous DMA transfers to hide memory latency and transfer overhead by maoving
information in parallel with SPU computation.

Used for control communication between an SPE and the FPE or other devices. Mailboxes hold
Mailboxes 32-bit messages. Each SPE has two mailboxes for sending messages and one mailbox for
receiving messages.

Used for control communication from the PPE or other devices. Signal notification (also called
Signal notification signaling) uses 32-bit registers that can be configured for one-sender-to-one-receiver signalling
or many-senders-to-one-receiver signalling.

3/2/2008 © 2007 IBM Corporation

4 Cell Programming Workshop

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MFC Commands

= Main mechanism for SPUs to
— access main storage (DMA commands)

— maintain synchronization with other processors and devices in the system
(Synchronization commands)

= Can be issued either SPU via its MFC by PPE or other device, as follows:

— Code running on the SPU issues an MFC command by executing a series of
writes and/or reads using channel instructions - read channel (rdch), write
channel (wrch), and read channel count (rchcnt).

— Code running on the PPE or other devices issues an MFC command by
performing a series of stores and/or loads to memory-mapped I/O (MMIO)
registers in the MFC

= MFC commands are queued in one of two independent MFC command queues:

— MFC SPU Command Queue — For channel-initiated commands by the
associated SPU

— MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or
other device

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Sequences for Issuing MFC Commands

v'All operations on a given channel are
unidirectional (they can be only read or
write operations for a given channel,
not bidirectional)

v'Accesses to channel-interface
resources through MMIO addresses do
not stall

v"Channel operations are done in
program order

v"Channel read operations to reserved
channels return ‘0O’'s

v"Channel write operations to reserved
channels have no effect

v'Reading of channel counts on
reserved channels returns ‘0’

v"Channel instructions use the 32-bit
preferred slot in a 128-bit transfer

Cell Programming Workshop

SPEs
{channel access)

‘Write LS address
to MFC_LSA channel

h 4

Write high 32 bits of EA address
to MFC_EAH channel
{only neaded for 64-bit EAs)

h 4

Write low 32 bits of EA address
to MFC_EAL channel

b

Write transfar size
to MFC_Size channal

h 4

Write tag-group 1D
to MFC_TaglD channeal

v

Write class IDs and command opcoda
to MFC_Cmd channel

!

Doneg

3/2/2008

PPE
(MMIC access)

Write LS address
to MFC_LSA register

h 4

Write 64-bit EA addrass
to MFC_EAH and MFC_EAL registers

h

Write transfer size and tag-group D
to MFC_Size and MFC_Tag registers

b

Write class IDs and command opcoda
to MFC_ClassID_CMD register

h 4

F s

Read command status from
MFC_CMDStatus register

Daonea

© 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Overview

7 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Commands

= MFC commands that transfer data are referred to as DMA
commands

= Transfer direction for DMA commands referenced from the SPE
= Into an SPE (from main storage to local store) > get

= Out of an SPE (from local store to main storage) - put

8 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Commands

Channel Control
Intrinsics
spu_writech

ComBosite
Intrinsics
spu_mfcdma32

MFC Commands defined as macros in
mfc_get spu_mfcio.h

For details see: SPU C/C++ Language Extensions

9 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Get and Put Command (SPU)

= DMA get from main memory into local store

(void) mfc_get(volatile void *Is, uint64 _t ea, uint32_t size,
uint32_t tag, uint32_t tid, uint32_t rid)

= DMA put into main memory from local store
(void) mfc_put(volatile void *Is, uint64 _t ea, uint32_t size,
uint32_t tag, uint32_t tid, uint32_t rid)

= To ensure order of DMA request execution:

— mfc_putf : fenced (all commands executed before within the same tag group
must finish first, later ones could be before)

— mfc_putb : barrier (the barrier command and all commands issued thereafter
are not executed until all previously issued commands in the same tag group
have been performed)

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA-Command Tag Groups

= 5-bit DMA Tag for all DMA commands (except getllar, putlic, and putlluc)

= Tag can be used to
— determine status for entire group or command
— check or wait on the completion of all queued commands in one or more tag groups

= Tagging is optional but can be useful when using barriers to control the ordering
of MFC commands within a single command queue.

= Synchronization of DMA commands within a tag group: fence and barrier

— Execution of a fenced command option is delayed until all previously issued
commands within the same tag group have been performed.

— Execution of a barrier command option and all subsequent commands is delayed
until all previously issued commands in the same tag group have been performed.

11 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Barriers and Fences

* Later Instructions

Earlier Instructions

- Synchronizing command
- Non-synchronizing command

I:I Execution slot

12 Cell Programming Workshop

Time

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Characteristics
= DMA transfers
— transfer sizes can be 1, 2, 4, 8, and n*16 bytes (n integer)
— maximum is 16KB per DMA transfer

— 128B alignment is preferable
= DMA command queues per SPU
— 16-element queue for SPU-initiated requests
— 8-element queue for PPE-initiated requests
» SPU-initiated DMA is always preferable
= DMA tags
— each DMA command is tagged with a 5-bit identifier
— same identifier can be used for multiple commands

— tags used for polling status or waiting on completion of DMA commands
= DMA lists

— a single DMA command can cause execution of a list of transfer requests (in LS)
— lists implement scatter-gather functions

— a list can contain up to 2K transfer requests

13 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

PPE — SPE DMA Transfer

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Transfer from PPE (Main Memory) to SPE

DMA get from main memory

mfc_get(lsaddr,ea,size,tag_id,tid,rid);

Also available via “composite intrinsic”:

spu_mfcdma64(lsaddr, eahi, ealow, size, tag_id, cmd);

Isaddr = target address in SPU local store for fetched data (SPU local address)

ea = effective address from which data is fetched (global address)

size = transfer size in bytes
tag_id = tag-group identifier
tid = transfer-class id

rid = replacement-class id

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Command Status (SPE)

DMA read and write commands are non-blocking

Tags, tag groups, and tag masks used for:
— checking status of DMA commands

— waiting for completion of DMA commands
Each DMA command has a 5-bit tag

— commands with same tag value form a “tag group”

Tag mask is used to identify tag groups for status checks
— tag mask is a 32-bit word
— each bit in the tag mask corresponds to a specific tag id:

tag_mask = (1 << tag_id)

Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Tag Status (SPE)

= Set tag mask
unsigned int tag_mask;
mfc_write tag mask(tag_mask);
— tag mask remains set until changed
= Fetch tag status
unsigned int result;
result = mfc_read_tag_status(); /* or mfc_stat_tag_status(); */
— tag status is logically ANDed with current tag mask

— tag status bit of ‘1’ indicates that no DMA requests tagged with the specific tag id
(corresponding to the status bit location) are still either in progress or in the DMA
queue

17 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Waiting for DMA Completion (SPE)

= Wait for any tagged DMA:

mfc_read tag_status_any():

— wait until any of the specified tagged DMA commands is completed
= Wait for all tagged DMA:

mfc_read tag status_all():

— wait until all of the specified tagged DMA commands are completed

» Specified tagged DMA commands = command specified by current tag mask
setting

18 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

Cell Programming Workshop

DMA Example: Read into Local Store

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

inline void dma mem to ls(unsigned int mem addr,

volatile void *1s addr,unsigned int size)

unsigned int tag = 0;
unsigned int mask = 1;

mfc get(ls addr,mem addr,size,tag,0,0);

Read contents
of mem_addr
into Is_addr

|

mfc write tag mask (mask);

Set tag mask

mfc read tag status all();

Wait for all tag

DMA completed

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

DMA Example: Write to Main Memory

inline void dma ls to mem(unsigned int mem addr,volatile
void *1s addr, unsigned int size)

{

20 Cell Programming Workshop

unsigned int tag = 0;
unsigned int mask = 1;

mfc put(ls addr,mem addr,size,tag,0,0);

Write contents of
mem_addr into
Is_addr

|

mfc write tag mask (mask);

Set tag mask

mfc read tag status all();

DMA completed

Wait for all tag

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPE — SPE DMA Transfer

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPE — SPE DMA

= Address in the other SPE’s local store is represented as a 32-bit effective address
(global address)

= SPE issuing the DMA command needs a pointer to the other SPE’s local store as a 32-
bit effective address (global address)

= PPE code can obtain effective address of an SPE’s local store:
#include <libspe.h>
speid_t speid;
void *spe Is addr;

spe_Is _addr = spe_get Is(speid);

= Effective address of an SPE’s local store can then be made available to other SPEs (e.g.
via DMA or mailbox)

3/2/2008 © 2007 IBM Corporation

22 Cell Programming Workshop

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Tips to Achieve Peak Bandwidth for DMAs

= The performance of a DMA data transfer is best when the source and
destination addresses have the same quadword offsets within a PPE
cache line.

= Quadword-offset-aligned data transfers generate full cache-line bus
requests for every unrolling, except possibly the first and last unrolling.

= Transfers that start or end in the middle of a cache line transfer a partial
cache line (less than 8 quadwords) in the first or last bus request,
respectively.

23 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Mailboxes Overview

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Uses of Mailboxes

= To communicate messages up to 32 bits in length, such as buffer completion flags or
program status

— e.g., When the SPE places computational results in main storage via DMA. After
requesting the DMA transfer, the SPE waits for the DMA transfer to complete and
then writes to an outbound mailbox to notify the PPE that its computation is
complete

= Can be used for any short-data transfer purpose, such as sending of storage
addresses, function parameters, command parameters, and state-machine parameters

= Can also be used for communication between an SPE and other SPEs, processors, or
devices

— Privileged software needs to allow one SPE to access the mailbox register in
another SPE by mapping the target SPE’s problem-state area into the EA space of
the source SPE. If software does not allow this, then only atomic operations and
signal notifications are available for SPE-to-SPE communication.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement
Mailboxes - Characteristics

Each MFC provides three mailbox queues of 32 bit each:
1. PPE (“SPU write outbound”) mailbox queue

— SPE writes, PPE reads

— 1 deep

— SPE stalls writing to full mailbox
2. PPE (“SPU write outbound”) interrupt mailbox queue

— like PPE mailbox queue, but an interrupt is posted to the PPE when the
mailbox is written

3. SPU (“SPU read inbound”) mailbox queue
— PPE writes, SPE reads
— 4 deep

— can be overwritten

» Each mailbox entry is a fullword

26 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MMIO Registers

SPE (outgoing)

— write the 32-bit message value to either its two outbound mailbox channels

SPE (incoming)

— reads a message in the inbound mailbox

PPE and other devices (incoming)

— read message In outbound mallbox by reading the MMIO register in the SPE’S M
PPE and other devices (outgoing)

— send by writing the associated MMIO register

For interrupts associated with the SPU Write Outbound Interrupt Mailbox,
— no ordering of the interrupt and previously issued MFC commands

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Mailboxes APl — libspe1.x
PPU (libspe.h) SPU (spu_mfcio.h)
MFC

dataflow

D

spe_stat_out_mbox(speid) spu_stat_out_mbox

PPE mbox _
spe_read_out_mbox(speid) spu_write_out_mbox
out_mbox

dataflow

<

spe_stat_out_intr_mbox(speid) spu_stat_out_intr_mbox

spe_get_event spu_write_out_intr_mbox

dataflow

—D

spe_stat_in_mbox(speid) spu_stat_in_mbox

spu_read_in_mbox

spe_write_in_mbox(speid)

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Mailboxes API — libspe2 (See more from libspe2 documents)

PPU (libspe2.h)

dataflow

MFC

SPU (spu_mfcio.h)

D

spe_out_mbox_status(<speid>)

spe_out_mbox_read(<speid>, &<datax

dataflow

)

PPE mbox

out_mbox

spu_stat_out_mbox

spu_write _out_mbox

<4

spe_out_intr_mbox_status(<speid>)

spe_get event

dataflow

spu_stat_out_intr_mbox

spu_write_out_intr_mbox

—D

spe_in_mbox_status(<speid>)

spe_in_mbox_write(<speid>,<data>)

Cell Programming Workshop

spu_stat_in_mbox

spu_read_in_mbox

3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPU Write Outbound Mailboxes

30 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPU Write Outbound Mailbox

The value written to the SPU Write Outbound Mailbox channel SPU_WrOutMbox is
entered into the outbound mailbox in the MFC if the mailbox has capacity to accept
the value.

If the mailbox can accept the value, the channel count for SPU_WrQOutMbox is
decremented by ‘1’.

If the outbound mailbox is full, the channel count will read as ‘O’.

If SPE software writes a value to SPU_WrOutMbox when the channel count is ‘0’, the
SPU will stall on the write.

The SPU remains stalled until the PPE or other device reads a message from the
outbound mailbox by reading the MMIO address of the mailbox.

When the mailbox is read through the MMIO address, the channel count is
incremented by ‘1°.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPU Write Outbound Interrupt Mailbox

— The value written to the SPU Write Outbound Interrupt Mailbox channel
(SPU_WrOutIintrMbox) is entered into the outbound interrupt mailbox if the mailbox
has capacity to accept the value.

— If the mailbox can accept the message, the channel count for SPU_WrOutIintrMbox is
decremented by ‘1’, and an interrupt is raised in the PPE or other device, depending
on interrupt enabling and routing.

— There is no ordering of the interrupt and previously issued MFC commands.
— If the outbound interrupt mailbox is full, the channel count will read as ‘0’.

— If SPE software writes a value to SPU_WrOutintrMbox when the channel count is ‘0’,
the SPU will stall on the write.

— The SPU remains stalled until the PPE or other device reads a mailbox message
from the outbound interrupt mailbox by reading the MMIO address of the mailbox.

— When this is done, the channel count is incremented by ‘1°.

32 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Waiting to Write SPU Write Outbound Mailbox Data

To avoid SPU stall, SPU can use the read-channel-count instruction on the SPU
Write Outbound Mailbox channel to determine if the queue is empty before writing
to the channel.

If the read-channel-count instruction returns ‘0’, the SPU Write Outbound Mailbox
Queue is full.

If the read channel-count instruction returns a non-zero value, the value indicates
the number of free entries in the SPU Write Outbound Mailbox Queue.

WheSn the queue has free entries, the SPU can write to this channel without stalling
the SPU.

Polling SPU Write Outbound Mailbox or SPU Write Outbound Interrupt Mailbox.

33

/* To write the value 1 to the SPU Write Outbound Interrupt Mailbox instead
* of the SPU Write Outbound Mailbox, simply replace SPU_WrOutMbox
* with SPU_WrOutintrMbox in the following example.*/

unsigned int mb_value;

do {

/* Do other useful work while waiting.*/

} while (!spu_readchcent(SPU_WrOutMbox)); // 0 = full, so something useful
spu_writech(SPU_WrOutMbox, mb_value);

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Polling for or Block on an SPU Write Outbound Mailbox Available Event

#define MBOX_AVAILABLE_EVENT 0x00000080
unsigned int event_status;
unsigned int mb_value;
spu_writech(SPU_WrEventMask, MBOX_AVAILABLE _EVENT);
do {
I*

* Do other useful work while waiting.

.
} while (!spu_readchcnt(SPU_RdEventStat));
event status = spu_readch(SPU_RdEventStat); /* read status */
spu_writech(SPU_WrEventAck, MBOX_ AVAILABLE EVENT); /* acknowledge event */
spu_writech(SPU_WrOutMbox, mb_value); /* send mailbox message */

= NOTES: To block, instead of poll, simply delete the do-loop above.

34 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

PPU reads SPU Outbound Mailboxes

= PPU must check Mailbox Status Register first

— check that unread data is available in the SPU Outbound Mailbox or SPU
Outbound Interrupt Mailbox

— otherwise, stale or undefined data may be returned

= To determine that unread data is available
— PPE reads the Mailbox Status register

— extracts the count value from the SPU_Out_Mbox_Count field

= countis
— non-zero - at least one unread value is present

— zero - PPE should not read but poll the Mailbox Status register

3/2/2008 © 2007 IBM Corporation

35 Cell Programming Workshop

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPU Read Inbound Mailbox

36 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPU Read Inbound Mailbox Channel

Mailbox is FIFO queue

— If the SPU Read Inbound Mailbox channel (SPU_RdInMbox) has a message,
the value read from the mailbox is the oldest message written to the mailbox.

Mailbox Status (empty: channel count =0)

— If the inbound mailbox is empty, the SPU_RdInMbox channel count will read as
‘0.

SPU stalls on reading empty mailbox

— If SPE software reads from SPU_RdInMbox when the channel count is ‘0’, the
SPU will stall on the read. The SPU remains stalled until the PPE or other
device writes a message to the mailbox by writing to the MMIO address of the
mailbox.

When the mailbox is written through the MMIO address, the channel count is
incremented by “1'.

When the mailbox is read by the SPU, the channel count is decremented by "1".

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPU Read Inbound Mailbox Characteristics

= The SPU Read Inbound Mailbox can be overrun by a PPE in which case, mailbox
message data will be lost.

= A PPE writing to the SPU Read Inbound Mailbox will not stall when this mailbox is full.

38 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

PPE Access to Mailboxes

PPE can derive “addresses” of mailboxes from spe thread id

First, create SPU thread, e.g.:

speid_t spe _id;

spe_id = spe_create_thread(0,spu_load_image,NULL,NULL,-1,0);
— spe_id has type speid_t (normally an int)

PPE mailbox calls use spe _id to identify desired SPE’s mailbox

Functions are in libspe.a

39 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Read: PPE Mailbox Queue — PPE Calls (libspe.h)

= “SPU outbound” mailbox

= Check mailbox status:

unsigned int count;
count = spe_stat_out_mbox(spe_id);
— count = 0 =» no data in the mailbox

— otherwise, count = number of incoming 32-bit words in the mailbox

= Get mailbox data:
unsigned int data;
data = spe_read_out_inbox(spe_id);
— data contains next 32-bit word from mailbox
— routine is non-blocking

— routine returns MFC_ERROR (OxFFFFFFFF) if no data in mailbox

40 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Write: PPE Mailbox Queues — SPU Calls (spu_mfcio.h)

= “SPU outbound” mailbox

= Check mailbox status:

unsigned int count;
count = spu_stat_out_mbox();
— count = 0 =» mailbox is full
— otherwise, count = number of available 32-bit entries in the mailbox

= Put mailbox data:

unsigned int data;
spu_write_out_mbox(data);
— data written to mailbox

— routine blocks if mailbox contains unread data

3/2/2008 © 2007 IBM Corporation

4 Cell Programming Workshop

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

PPE Interrupting Mailbox Queue — PPE Calls

= “SPU outbound” interrupting mailbox

= Check mailbox status:

unsigned int count;
count = spe_stat_out_intr_mbox(spe_id);
— count = 0 =» no data in the mailbox
— otherwise, count = number of incoming 32-bit words in the mailbox
= Get mailbox data:
— interrupting mailbox is a privileged register

— user PPE applications read mailbox data via spe_get _event

42 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

PPE Interrupting Mailbox Queues — SPU Calls

= “SPU outbound” interrupting mailbox

43

Put mailbox data:

unsigned int data;
spe_write_out_intr_mbox(data);

— data written to interrupting mailbox

— routine blocks if mailbox contains unread data

defined in spu_mfcio.h

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Write: SPU Mailbox Queue — PPE Calls (libspe.h)

= “SPU inbound” mailbox

= Check mailbox status:

unsigned int count;
count = spe_stat_in_mbox(spe_id);
— count = 0 =» mailbox is full
— otherwise, count = number of available 32-bit entries in the mailbox

= Put mailbox data:
unsigned int data, result;
result = spe_write_in_mbox(spe_id,data);
— data written to next 32-bit word in mailbox
— mailbox can overflow

— routine returns OxFFFFFFFF on failure

44 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Read: SPU Mailbox Queue — SPU Calls (spu_mfcio.h)

= “SPU inbound” mailbox

= Check mailbox status:

unsigned int count;
count = spu_stat_in_mbox();
— count = 0 =» no data in the mailbox
— otherwise, count = number of incoming 32-bit words in the mailbox

= Get mailbox data:

unsigned int data;

data = spu_read_in_mbox();
— data contains next 32-bit word from mailbox
— routine blocks if no data in mailbox

45 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Mailbox Channels and their Associated MMIO Registers

MMIC Register Interface

i Channel Interface
I
8, . 8
= Mame £ E ; set = :
o Mremonic w |8 |RW Width From Mnemonic w | R Width
LLl . | o ibits) . (bits)
oL ¥ | m Base x
] = =
28 | o Winite Outbound SPU WroutMbox | 1 |yes| W | 32 | X04004' |SPU Out Mbox 1 R | 22
209 |5PU Read Inbound Mailbox | SPL Rdinhbox 4 yes R 32 x}0400c 1 s5PU In. Mbox 4 W 22
SPU Write Qutbound . .
a0 |ntermp’t' rf,lailbmf1”” SPU WrOutlntrMbox | 1 | yes| W | 32 || X04000' |SPU Out Intr Mbox | 1 | R | 64
— |SPU Mailbox Status — — | — | — — || X'04014" | 5PU Mbox Stat 1 R 22
1. Access to this MMIO register is available only to privileged PPE software.
Functions of Mailbox Channels (SPU)
Channel Interface SPU Rgad o Functions
Write
SPLOWrOuth box w Writes message data to the outbound mailbox.

SPURdInMbox

R

Returns the next message data from the inbound mailbox

SPUOWrOutintribosx

W

Writes message data to the outbound interrupt mailbox.

Cell Programming Workshop

3/2/2008 © 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Functions of Mailbox MMIO Registers (PPU)

FPPE Read or

MKMID Reqister Write Functions
SPU Out Mbox R Returns the message data fromthe corresponding SPU outbound mailbox.
SPU In. Mbiox W Writes message data to the SPU inbound mailbos.
SPU Out Intr Mbos! R Returns the message data from the corresponding SPU outbound interrupt mailbox.
SPU Mbox Stat R Returns the number of available mailbox entries.

1. Access to the SPL Out Intr Mbox MO register is available only to privileged PPE software.

Cell Programming Workshop

3/2/2008 © 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

BACKUP - Reference APIs

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MFC Command Suffixes

Start SPU

Fenced

Barrier

List

Suffix Description
s Starts the execution of the SPLU at the current location indicated by the SPU Mext Program Counter
Fedister after the data has been transferred into or out of the local store.
f Tag-specific fence, Commands with a tag-specific fence are locally orderad with respect to all previ-
olsly-issusd commands within the same tag group and command queus,
Tag-specific barrizr. Commands with a tag-specific barrier are locally ordered with respect to all previ-
]

ously-issued commands within the same tag aroup and command queue and all subsequentlv-issued

commands to the same command queue with the same tag.

List command. Executes a list of OMA transfer elements located in local store. The maximum number

of elements is 2,048, and sach glement describes a transfer of up to 16 KEB.

Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MFC DMA Commands

Mnemonic Supported By1 Description

Put Commands

put FFE, SFE [Moves data from local store to the effective address,

Moves data from local store to the effective address and starts the SPLU after the

puts FFE DA operation completes,

Moves data from local store to the effective address with fence (this command is
putf FFE, SFE locally ardered with respect to all previously issusd commands within the same tag
araup and command queuel,

Moves data from local store to the effective address with barrier (this command
and all subsequent commands with the same tag D as this command are locally

puth FPE, SPE orclered with respect to all previously issued commands within the same tag aroup
and command queue).
Moves data from local store to the effective address with fence (this command is
putfs PPE locally ardered with respect to all previously issusd commands within the same tag

aroup and command queusd and starts the SPU after the DMA operation com-
pletes.

IMowves data from local store to the effective address with barrier (this command
PPE and all subsequent commands with the same tag 1D as this command are locally

putbs ordered with respect to all previously issued commands within the same tag aroup
and command queue) and starts the SPLU after the DMA operation completes,
putl SFE Moves data from local store to the effective address using an MFC list,

Moves data from local store to the effective address using an MFC list with fence
putlf SPE (this command is locally ordered with respect to all previously issuesd commands
within the same tag group and command queus).

Moves data from local store to the effective address using an MFC list with barrier
(this command and all subsequent commands with the same tag (D as this com-
mand are locally ordered with respectto all previously issued commands within the
same tag group and command gqueus),

putlb SPE

50 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MFC DMA Commands (Cont’'d)

51

Get Commancds

aet

FFE. SFE

MMoves data from the effective address to local store.

gets

FPE

Moves data from the effective address to local store, and stats the SPLU after the
DA operation completes,

getf

FFE SFE

Moves data from the effective address to local store with fence (this command is
l[ocally ardered with respect to all previously issued commands within the same tag
group and command gqueus),

geth

FFE. SFPE

Moves data from the effective address to local store with barrigr (this command
and all subsequent commands with the same tag 1D as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queLls),

getfs

PPE

Moves data from the effective address to local store with fence (this command is
l[ocally ardered with respect to all previously issued commands within the same tag
qroup), and starts the SPLU after the DMA cperation completes.

aeths

FPE

Moves data from the effective address to local store with barrigr (this command
and all subseqguent commands with the same tag 1D as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queus), and starts the SPL after the DMA operation completes,

getl

SPE

Moves data from the effective address to local store using an MFEC list,

getlf

SFE

Moves data from the effective address to local store using an MFC list with fence
(this command is locally ordered with respect to all previously issued commands
within the same tag group and command quele).

getlb

SPE

Moves data from the effective address to local store using an MFC list with barrier
(this command and all subsequent commands with the same tag (D as this com-
mand are locally ordered with respect to all previously issusd commands within the
same tag group and command queue).

3/2/2008

Cell Programming Workshop

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Synchronization Commands

52 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MFC Synchronization Commands

53

MFC synchronization commands

= Used to control the order in which DMA storage accesses are performed

= Four atomic commands (getllar, putlic, putlluc, and putqlluc),

= Three send-signal commands (snhdsig, sndsigf, and sndsigb), and

* Three barrier commands (barrier, mfcsync, and mfceieio).

Command Supported By1 Desaription
Barrier type ardering. Ensures ordering of all preceding, nonimmediate DMA com-
barrier PPE SPE mands with respect toall commands following the barrier command within the
' same command queues. The barrier command has no effect on the immediate DA
commands: getllar, putlle, and putlluc.
Controls the ardering of get commands with respect o put commands, and of get
commands with respect to get commands accessing storage that is caching inhik-
mfceieio FFE, SFE ited and guarded . Also controls the ordering of put commands with respect to put
commands accessing storage that is memory coherence required and not caching
inhibited.
Controls the ordering of DMA put and get operations within the specified tag aroup
mfcsync PPE, SPE with respeact to other processing units and mechanisms in the system.
shdsig FFE. SFE Lpdate SPLU Signal Motification Registers in an 'O device ar another SPE.
sndsigb PPE. SPE :.ilgrdate SPLU Signal Notification Registers inan 110 device or another SPE with bar-
sndsigf PPE. SPE %ﬁgzte SPU Signal Maotification Registers inan 110 device or anather SPE with

1. Thereis a channel (for SPEs) andior MMIO register (for PPE) to suppaort the aperation.

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

MFC Atomic Commands

Command Supported B{ﬂ Description
getllar SPE Get lock line and create a reservation (executed immediately).
putllc SFE Futlock line conditional on a resenvation (executed immediately).
putliuc SPE Futlock ling unconditional (executaed immediately).

putgliuc SPE Futlock ling unconditional (queusd form).

1. Thereis a channelto support the operation.

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Special Notices -- Trademarks

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in
other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY
10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations
and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Many of the features described in this document are operating system dependent and may not be available on Linux. For more information,
please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this
document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised January 19, 2006
Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Special Notices (Cont.) -- Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks, BladeCenter,
Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business Partner (logo),
IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries; Advanced Micro-
Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power
Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWERG6, POWERG6+, Redbooks, System p, System p5, System Storage, VideoCharger,
Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at:

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries,
or both.

Rambus is a registered trademark of Rambus, Inc.

XDR and FlexIO are trademarks of Rambus, Inc.

UNIX is a registered trademark in the United States, other countries or both.

Linux is a trademark of Linus Torvalds in the United States, other countries or both.

Fedora is a trademark of Redhat, Inc.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.

Intel, Intel Xeon, ltanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and
SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).

AltiVec is a trademark of Freescale Semiconductor, Inc.

PCI-X and PCI Express are registered trademarks of PCI SIG.

InfiniBand™ is a trademark the InfiniBand® Trade Association

Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

56 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Special Notices - Copyrights

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

