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Challenges facing microprocessorsChallenges facing microprocessors

+ Moore’s law still holds
– Smaller transistor size
– More transistors

• Power wall
– Voltage does not scale
– Power density problem

• Memory wall
– Higher latency to hide

• Frequency wall
– Diminishing returns in performance
– Worsen the power problem
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MultiMulti--core/Manycore/Many--core Processorscore Processors

• General purpose multi-core CPUs

• Graphics processors
– AMD/ATI RV670, RV770, etc.
– Nvidia G80, GTX280, etc.

• Cell Broadband Engine

• Larrabee (later) 
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Power wallPower wall

• Key idea: each core runs at lower voltage (potentially 
lower frequency)

• Dynamic power consumption is proportional to FV2

• Same idea for mutli-core CPU, GPUs, Cell BE and 
Larrabee
– Homogeneous cores vs. heterogeneous cores



3

University of Central Florida

Memory wallMemory wall
• Multi-core CPUs

– Large on-chip caches
– On-chip memory controllers

• GPUs
– Fine grain multithreading + coarse grain multithreading 
– Small caches
– Software managed local shared memory (or cache)
– On-chip memory controllers: Memory coalescing 
– Ratio of number of threads over the number of cores in each SIMD engine 

(AMD GPUs) or MP (Nvidia GPUs)
• E.g., 400 cycles memory access latency
• Warp size 32. Independent ops 2 after a memory access.  
• How many warps necessary to hide the latency

• Cell BE
– Software managed shared memory (or cache)
– DMA (enforced/explicit coalescing)
– Overlapping DMA and computation
– Coarse grain multithreading
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Frequency wallFrequency wall

• Multi-core CPUs
– Balancing number of pipeline stages vs. complexity

• Complicated branch predictor for control hazard
• OOO + Renaming + Bypass for data hazard

– Most advanced semiconductor technologies

• GPUs
– Simplest pipeline: small number of pipeline stages, in-order, 

scalar (Nvidia GPUs) / VLIW (AMD/ATI GPUs)

• CellBE
– Vector pipeline (a relatively high number of pipeline stages 

vs. GPU)
– Rely on software to handle branches



4

University of Central Florida

Programming modelProgramming model

• Multi-core CPUs
– Shared memory model (cache coherent)
– Most flexible, compatible with legacy code
– Explicit multithreading for high performance (task-level parallelism)

• The cost of communication among threads is low
– SSE (SIMD instructions) for data-level parallelism

• GPUs
– SPMD

• High cost of communication among threads if not in the same thread 
block

– Data level parallelism

• CellBE
– Explicit multithreading 
– Vector/SIMD programming
– Explicit management of communication
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Key to Performance Key to Performance 

• Multi-core CPUs
– Instruction-level parallelism exploited by hardware
– Thread-level parallelism by user

• Workload balance
• Inter-thread communication & synchronization

• GPUs
– Data-level parallelism by user
– Local data share (or shared memory) explicitly managed by user
– User also needs to overcome the limited HW support for inter-

thread communication and synchronization

• CellBE
– Data-level parallelism by user
– Local storage explicitly managed by user
– Vectorization, either by user or compiler
– User needs to manage DMAs and hide their latency 


