
CAL Kernel Programming

1

2

Module Overview

• CAL Kernel Programming APIs

• Overview of AMD IL

• Overview of AMD GPU ISA

3

CAL Kernel Programming APIs

• AMD Brook+

• DirectX High Level Shading Language (HLSL)

• AMD Intermediate Language (IL)

• AMD GPU-specific Assembly Instruction Set (ISA)

AMD Brook+

• ‘C’ with Streaming Extensions
• Includes

– Kernel programming interface
– Runtime implementation

Transparent to application programmer
Supports multiple runtimes

– Runtime API
Simple and small API for basic operations
Provides only high-level control over stream data

4

DirectX High Level Shading Language
(HLSL)

• ‘C’ for GPU Programming for 3D applications
• Includes

– Kernel Programming Interface
– Runtime provided by associated runtime library (DirectX)
– Front-end compiler provided by Microsoft (fxc)

– Back-end code generation and optimization done by GPU
vendors

• Original BrookGPU included as DirectX runtime
– Generate HLSL for Brook kernels
– Invoke DirectX runtime calls for stream management and

kernel invocation, etc

5

AMD Intermediate Language

• Psuedo-assembly interface
• Interface is Architecture Independent
• Includes graphics-ish commands as well
• Evolves with GPU evolution
• Specifications available with the SDK installation

6

AMD GPU ISA

• True GPU assembly
• Interface and Implementation is Architecture

Dependent
– Exposes the GPU architecture completely
– Provides insight into GPU architecture and expected

performance

• No optimizations done by the assembler on specified
ISA

• Not expected to use directly for application
development
– Very useful for performance profiling
– Useful for debugging programs

7

Overview of AMD IL

8

AMD IL Interface

• An IL program consists of
– Versioning information, declarations, etc
– Registers (operands, temporaries and results)
– Instructions

• IL registers are 4-component vectors
• IL instructions that accept vectors by default perform

vector instructions
– Current and future GPUs have superscalar units so scalar

instructions are encouraged
⇒Use masking operators when vector instructions are not

needed
⇒The compiler will optimize the generated code

appropriately

9

AMD IL – Data Types

• IL is a type-less language
– Registers do not have specific types
– Can be used to store 32-bit integers, floats, and 64-bit

double precision values
– Types are defined by the instructions, e.g.
IMUL, UMUL, MUL and DMUL

correspond to multiplication of
signed integers, unsigned integers, floats and doubles
respectively

10

AMD IL – Instruction Syntax

<instr>[_<ctrl>][_<ctrl(val)>]
[<dst>[_<mod>][.<write-mask>]]
[, <src>[_<mod>][.<swizzle-mask>]]...

Items within <> are replaced by specific words or phrases. For
example, <instr> could be replaced by mov.

When more than one item of the same type exists, for example
<src>, a zero-based number is appended to the item name. For
example, for 2-input instructions the sources (inputs) would be
labeled src0 and src1.

Items within square brackets, [], are optional.

Items within braces, {}, represent a choice-grouping. For example,
{x|y|z|w} means to choose x, y, z or w.

An ellipsis, ..., represents a list of alternatives having the same
format as the first alternative in the list.

11

Important ALU Instructions

ADD – Addition of two registers

add dst, src0, src1

dst = src0 + src1

MUL – Multiplication of two registers

mul dst, src0, src1

dst = src0 * src1

MAD – Multiplication of two registers and addition with third
– More efficient as it performs 2 vector instructions in 1 cycle

mad[_ieee] dst, src0, src1, src2

dst = src0 * src1 + src2

12

Important ALU Instructions

DIV – Division of two registers

div_zeroop(op) dst, src0, src1

dst = src0 / src1

zeroop() decides value of output if divisor is zero, e.g.

fltmax, zero, infinity, inf_else_max

RCP – Reciprocal

rcp_zeroop(op) dst, src0

dst = 1/src0.w

SQRT – Square Root

sqrt dst, src0

dst = sqrt(src0.w)
13

14

IL Registers

IL provides registers for various tasks

Register Description Need to
declare

Example

r# Temporary No mad r0, r0, r0, r0

cb#[#] Const buffer Yes mov o0, cb0[0]

v0 Position Yes mul o0, v0.xyxx, cb0[0]

o# Output Yes mov o0, v0.xyxx

Reading Inputs - Samplers

• Handle used to “Sample” or read from input buffers (textures
in graphics)
– specify the buffer from which to read
– the address within this buffer – 2-tuple for 2D buffers
– use sampling operator

C
// Buffer A, Address (x, y), Operator [][]

float temp = A[x][y];

Brook+
// Buffer A, Address vector reg.xy, Operator []

float templ = A[reg.xy];

IL
// Buffer resource 0, Address vector v0.xy, Operator
// sample_resource(#)_sampler(#)
sample_resource(0)_sampler(0) r0, v0.xy

15

Reading Inputs - Samplers

• Both the sample operator and output register are type-less
– The data format and sampling mode needs to be specified in the

kernel for each sampler
e.g.
dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmt
z(float)_fmtw(float)

Type of resource (1d vs 2d) specified
Type of address (normalized vs unnormalized) specified
– Normalized uses coordinates in [0..1] range
– Unnormalized uses coordinates in [0..n-1] range

16

2D Resource Unnormalized Float

Register Modifiers, Masks and Swizzles

<instr>[_<ctrl>][_<ctrl(val)>]
[<dst>[_<mod>][.<write-mask>]]
[, <src>[_<mod>][.<swizzle-mask>]]...

17

Destination Modifier Source Modifier

Write Mask

Swizzle Mask

Source Modifiers

18

Destination Modifiers

19

Write Masks

• Mask a destination element using specified flag

reg.{x|_|0|1}{y|_|0|1}{z|_|0|1}{w|_|0|1}

– Letter (x, y, z, w) => element to be written
– Underscore (_) => element not to be written
– Zero (0) or One (1) => element forced to zero or one

– Omitting => underscore

E.g.

mov r0.x_zw, r1

mov r0.x_01, r1

20

Swizzle-mask

• Manipulate the default positions of elements in a
register to be used as a source/destination

reg.{x|y|z|w|0|1}{y|z|w|x|0|1}{z|w|x|y|0|1}{w|x|y|
z|0|1}

– Swizzle mask is position dependent
– Letter (x, y, z, w) => element to be read/written
– Zero (0) or One (1) => element forced to zero or one

– Omitting => default value

E.g.

mov r0, r1.yz ; same as mov r0, r1.yzzw

mov r0, r1.yzx1 ; force r0.w to be 1

21

Comments

Semi-colon used for comment

e.g.

; this is a comment

mov r0, r1 ; this is another comment

22

Overview of AMD GPU ISA

AMD GPU ISA

• Reviewing assembly is handy for performance profiling
and debugging

• CAL provides interfaces to dump dis-assembly from
CALimage

calclDisassembleImage
void calclDisassembleImage(const CALimage image,

CALLogFunction logfunc);

• Disassembles the CAL image
calclDisassembleObject

void calclDisassembleObject(const CALobject* obj,
CALLogFunction logfunc);

• Disassembles the CAL object

24

AMD GPU ISA

• Disassembler
– Both outputs the disassembled ISA on a line-by-line basis
– Uses application specified log function
typedef void (*CALLogFunction)(const char* msg);

void disasm(const char *msg) {

fprintf(stderr, “%s\n”, msg);

}

calclDisassembleImage(image, disasm);

calclDisassembleObject(object, disasm);

• Command line utilities – amudisasm, amuasm
– Dis-assemble a given binary image
– Assemble a given text GPU ISA kernel

25

AMD IL to GPU ISA

26

INPUT: AMD IL Kernel OUTPUT: R600 ISA

Performance statistics for different GPUs

AMD GPU ISA - Program Structure

• ISA Program consists of set of Instruction Clauses
– ALU Clauses
– TEX Clauses

• ISA Maps directly to the underlying hardware
– Computational Core consists of 5-way ALU units
– ALU Clause consists of one or more ALU Instruction Groups
– ALU Instruction Group consists of up-to 5 ALU instructions

• Represented by x, y, z, w, t

• TEX Clauses perform memory read operations
– Texture mapping in 3D graphics
– Additional Flags are used for compute-specific features

27

AMD GPU ISA - Program Example

kernel void

test(int N,

float A<>,

float B<>,

out float C<>)

{

float a = A + 5.0f;

float b = B + 5.0f;

C = a + b;

}

00 TEX: ADDR(48) CNT(2) VALID_PIX

0 SAMPLE R1.x___, R0.xyxx, t0, s0 UNNORM(XYZW)

1 SAMPLE R0.x___, R0.xyxx, t1, s0 UNNORM(XYZW)

01 ALU: ADDR(32) CNT(5)

2 y: MOV R0.y, 0.0f

z: ADD ____, R0.x, (0x40A00000, 5.0f).x

w: ADD ____, R1.x, (0x40A00000, 5.0f).x

3 x: ADD R0.x, PV2.w, PV2.z

02 EXP_DONE: PIX0, R0.xyyy

END_OF_PROGRAM

AMD GPU ISA

• Reveals Information on
– Actual number of ALU cycles in kernel
– Data Dependencies
– ALU utilization

• Does not reveal Information on
– Total number of cycles for execution

• Memory access latencies are not accounted for

29

AMD GPU ISA - Program Structure

; ---------- PS Disassembly -------

00 TEX: ADDR(48) CNT(1) VALID_PIX

0 SAMPLE R0, R0.xy0x, t0, s0
UNNORM(XYZW)

01 ALU: ADDR(32) CNT(4) KCACHE0(CB0:0-15)

1 x: MUL R0.x, R0.x, KC0[0].x

y: MUL R0.y, R0.y, KC0[0].y

z: MUL R0.z, R0.z, KC0[0].z

w: MUL R0.w, R0.w, KC0[0].w

02 EXP_DONE: PIX0, R0

END_OF_PROGRAM

30

ALU Clauses

Fetch Clauses

Cycle 1

Cycle 0

Important Tokens

R# - 128-bit GPRs

KCACHE# - GPU Constant Cache

SAMPLE – Memory Read Operation

F_TO_I – Floating point to Integer conversion

LOOP_DX10 – DX10-style for loop

31

32

Q&A and Recap

• CAL Kernel Programming Interfaces
– Brook+
– HLSL
– AMD IL
– AMD GPU ISA

	CAL Kernel Programming
	Module Overview
	CAL Kernel Programming APIs
	AMD Brook+
	 DirectX High Level Shading Language (HLSL)
	AMD Intermediate Language
	AMD GPU ISA
	Overview of AMD IL
	AMD IL Interface
	AMD IL – Data Types
	AMD IL – Instruction Syntax
	Important ALU Instructions
	Important ALU Instructions
	IL Registers
	Reading Inputs - Samplers
	Reading Inputs - Samplers
	Register Modifiers, Masks and Swizzles
	Source Modifiers
	Destination Modifiers
	Write Masks
	Swizzle-mask
	Comments
	Overview of AMD GPU ISA
	AMD GPU ISA
	AMD GPU ISA
	AMD IL to GPU ISA
	AMD GPU ISA - Program Structure
	AMD GPU ISA - Program Example
	AMD GPU ISA
	AMD GPU ISA - Program Structure
	Important Tokens
	Q&A and Recap

